首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

2.
Local advection of momentum,heat, and moisture in micrometeorology   总被引:1,自引:0,他引:1  
The local advection of momentum, heat and moisture in micrometeorology due to a horizontal inhomogeneity in surface conditions is numerically investigated by a higher-order turbulence closure model which includes equations for the mean quantities, turbulent fluxes, and the viscous dissipation rate. The application of the two-dimensional model in this paper deals with the simulation of the flow from an extensive smooth dry area to a grassy wet terrain. The mean wind speed, temperature, and humidity distributions in the resulting internal boundary layer downstream of the surface discontinuity are determined such that the energy and moisture balances at the Earth's surface are satisfied.Numerical calculations of the mean temperature and humidity profiles are compared with available observed ones. The results include the advective effects on turbulent flux distributions, surface energy balance, evaporation rate, and Bowen ratio. The sensitivity of the predicted mean profiles and turbulent flux distributions to the surface relative humidity, thermal stratification, and the roughness change is discussed.NRC-NAS Resident Research Associate at AFCRL.  相似文献   

3.
Measurements made as part of studies of the evolution of the planetary boundary layer (the Sangamon experiments of 1975 and 1976) are used to compare the surface eddy fluxes of heat and momentum over adjacent fields of soybeans and maize. Although the maize canopy was much taller and rougher than that of the soybeans, daytime eddy fluxes of momentum over the maize exceeded those over the soybeans by only about 35%, in good agreement with predictions based on PBL similarity theory. Heat flux was about 10% greater over the maize, probably as a consequence of greater evaporation over the soybeans. Infrared surface temperatures generally differed by less than 0.4 °C and net radiation by less than 10%. For the soybean canopy, the momentum displacement height was found to be located at approximately 90% of the crop height, and the roughness length was about 5%. The roughness length for sensible heat transfer was found to be 2–3% of the soybean canopy height. For the maize canopy, the momentum displacement height was about 60% of the crop height, and the roughness length about 7%.Work supported under the auspices of the U.S. Department of Energy.  相似文献   

4.
雷孝恩  张时禹 《大气科学》1992,16(2):228-236
本文设计了一冠层(CL)和大气边界层(ABL)之间物质和动量交换的耦合模式,并对CL内风速、物质随高度分布和日变化作了数值模拟.结果表明,由大尺度扩散引起冠层低层的第二个风速极大和多极值的浓度分布,CL内湍流通量和物质浓度随高度减小而迅速降低,以及CL动量减小对浓度分布的重要影响,模式都能很好地描述,模拟结果与观测事实有好的一致性.利用浓度和温度廓线相似假设,导出了质量汇的经验关系.  相似文献   

5.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

6.
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.  相似文献   

7.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

8.
Turbulent flux measurements both above and beneath the canopy of a boreal aspen forest are described. Velocity skewness showed that, beneath the aspen canopy, turbulence was dominated by intermittent, downward penetrating gusts. Eulerian horizontal length scales calculated from integration of the autocorrelation function or spectral peaks were 9.0 and 1.4 times the mean aspen height of 21.5 m respectively. Above-canopy power spectral slopes for all velocity components followed the -2/3 power law, whereas beneath-canopy slopes were closer to -1 and showed a spectral short cut in the horizontal and vertical components. Cospectral patterns were similar both above and beneath the canopy. The Monin–Obukhov similarity function for the vertical wind velocity variance was a well-defined function of atmospheric stability, both above and beneath the canopy. Nocturnal flux underestimation and departures of this similarity function from that expected from Monin–Obukhov theory were a function of friction velocity. Energy balance closure greater than 80% was achieved at friction velocities greater than 0.30 and 0.10 m s-1, above and below the aspen canopy, respectively. Recalculating the latent heat flux using various averaging periods revealed a minimum of 15 min were required to capture 90% of the 30-min flux. Linear detrending reduced the flux at shorter averaging periods compared to block averaging. Lack of energy balance closure and erratic flux behaviour led to the recalculation of the latent and sensible heat fluxes using the ratio of net radiation to the sum of the energy balance terms.  相似文献   

9.
A simple mixed-layer model is developed to describe evaporation into a convective planetary boundary layer (PBL). The model comprises volume budget equations for temperature and humidity, equations to describe transport through the surface layer which is treated as part of the lower boundary, and equations to describe entrainment at the top of the PBL. The ground surface is modelled as a canopy resistance. The model was integrated with canopy resistance, surface-layer resistance and available energy, (R n – G), input as given functions of time, and the simulated PBL was allowed to grow into an atmosphere with known temperature and humidity profiles.Two variants of the mixed-layer model were tested using data from the KNMI tower site at Cabauw in the Netherlands. These variants differed only in the formulation of entrainment: one used a formulation developed by Driedonks (1982) while the other was a simpler formulation. Simulated evaporation agreed very well with observations irrespective of which entrainment formulation was used, despite discrepancies between simulated and observed PBL height growth which were sometimes quite large for the simpler formulation. Sensitivity analysis of the model confirms that good PBL height-growth predictions are not always a prerequisite for good evaporation predictions.  相似文献   

10.
The basic numerical air-sea boundary-layer model described in Pandolfo (1969a, b) was varied to produce a set of models with differing atmospheric boundary-layer formulas, four of which are discussed here. Model I is the basic model itself, with stability and sea-state dependent eddy viscosity, conductivity and diffusivity which may, in certain ranges ofRi, be unequal. This model is applied on a relatively fine grid. Model II, applied on the same grid, uses formulas which yield equal eddy conductivity, diffusivity, and viscosity. The calculated eddy coefficients depend only on the height and wind shear. Model III uses the same exchange coefficient formulas as Model II. However, the surface-layer eddy flux in Model III is calculated by assuming that logarithmic profiles of the transported variables are present in this layer. Model IV is the same as Model III in these respects, but employs a relatively coarse vertical grid. This model, therefore, includes boundary layer formulas most like those conventionally used in large scale atmospheric models (e.g. Miyakoda, 1969).The four models were integrated numerically with identical inputs of initial, boundary, and auxiliary data prepared from observations made over the eastern half of the BOMEX observational area during June 21–25, 1969.Models I and IV are, in general, in better agreement with each other than either is with Model II. This is true for the model-generated upper and lower boundary fluxes of mean momentum and latent heat; and for the internal boundary layer production of mean kinetic energy by the cross-isobaric flow component. Model I agrees, on balance, about as well with Model IV as does Model III. The solutions for Models I, III, and IV are also, in general, more consistent with observed data, viz. 5-day average temperature profiles in the layer from the surface to 1000 meters, and 5-day averages of sea surface temperature and of surface-layer atmospheric humidity. Solutions for Model I are in better overall agreement with the observed data, and with the average observed surface-layer wind.The results show that, under the limitations implicit in these preliminary experiments, accurate simulations of observed data are possible with boundary-layer formulas of the type used in Model IV, and even more accurate simulation with the modest refinements represented by Model I. Piecemeal imposition of such refinements could, however, lead to models, like Model II, with significantly different energetic properties and less simulative accuracy. Specifically, the results support the speculation (Miyakodaet al., 1969) that the shallowness of the simulated Trades noted in some large-scale models is due to deficiencies in the boundary-layer eddy stress formulations used.  相似文献   

11.
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.  相似文献   

12.
The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.  相似文献   

13.
Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.  相似文献   

14.
应用城市冠层模式研究建筑物形态对城市边界层的影响   总被引:5,自引:1,他引:4  
文中将城市冠层模式耦合到南京大学城市尺度边界层模式中,通过模拟对比发现,耦合模式对城市地区气温模拟结果更接近于观测值,尤其是对城市地区夜间气温模拟的改进.运用改进耦合模式通过多个敏感性试验的模拟,从城市面积扩张、建筑物高度增加、建筑物分布密度变化等角度研究城市建筑物三维几何形态变化对城市边界层及城市气象环境的影响,试验结果表明:(1)城市面积扩张使得城市下垫面的热通量增大,热力湍流活动增强,动量通量输送增强,城市湍能增大,湍流扩散系数变大,城市气温升高,且对不同时刻城市区域大气层结稳定度均有不同程度的影响.(2)建筑物高度增加增大了城市下垫面的粗糙度和零平面位移.同时也增大了城市街渠高宽比.城市建筑物越高,白天城市地区地表热通量越小,城市上空大气温度越低,平均风速减小,湍能减小;夜间由于高大建筑物释放储热比低矮建筑物要多,其热力湍流相对活跃,地表热通量增大,使得城市区域气温较高.(3)建筑物密度增大,会减小城市下垫面的粗糙度同时增强街渠对辐射的影响.建筑物密度增大在白天会减小地表热通量和动量通量,使城市气温降低,平均风速增大,城市湍流活动能力减弱;夜间城市释放较多储热使得气温较高.  相似文献   

15.
梯度法观测大气与森林生态系统间羰基硫(COS)的交换通量   总被引:4,自引:0,他引:4  
本工作用梯度法测定了大气与其下垫的森林间COS的交换通量。测量在德国哥廷根大学的一座50m高的森林观测塔上进行,该塔坐落在德国中部的Solling自然保护区的森林中。观测现场生长着树龄分别为120a和80a的山毛榉和云杉。树冠线约28m高。在塔上离地面32m,38m和50m的地方用冷以法同时采集了空气样品。样品用气相色谱-火焰光度检测法测定。COS通量由其梯度及扩散系数求出。扩散系数由与COS一起测得的感热和水蒸气通量导出。在稳定边界层条件下共获得20条廓线。每条廓线都显示COS浓度随高度下降而降低的趋势,说明森林吸收COS。总的结果表明,COS向森林中的平均输送通量为(143±54)ngCOSm-2·s-1.  相似文献   

16.
基于2019年12月至2020年11月峨眉山站梯度塔资料、辐射观测资料和地表通量资料,采用涡动相关法对峨眉山地区近地层的地表通量和蒸散发量的变化进行分析,并估算了零平面位移、空气动力粗糙度、空气热力粗糙度、动量通量输送系数和感热通量输送系数等重要的空气动力学和热力学参数.研究表明:近地面风速呈现高层高、低层低的特征,且...  相似文献   

17.
An overview of the Energy Balance Experiment (EBEX-2000) is given. This experiment studied the ability of state-of-the-art measurements to close the surface energy balance over a surface (a vegetative canopy with large evapotranspiration) where closure has been difficult to obtain. A flood-irrigated cotton field over uniform terrain was used, though aerial imagery and direct flux measurements showed that the surface still was inhomogeneous. All major terms of the surface energy balance were measured at nine sites to characterize the spatial variability across the field. Included in these observations was an estimate of heat storage in the plant canopy. The resultant imbalance still was 10%, which exceeds the estimated measurement error. We speculate that horizontal advection in the layer between the canopy top and our flux measurement height may cause this imbalance, though our estimates of this term using our measurements resulted in values less than what would be required to balance the budget. The National Center for Atmospheric Research is supported by the National Science Foundation  相似文献   

18.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

19.
Model predictions of CO2 concentrations downwind from a line source were calibrated using experimental data. Agreement between the model and experimental data was improved by adjusting for wind direction meander and cup anemometer overshoot. The model predictions showed that by using a negative exponential wind speed profile within the crop canopy, predictions were closer to observed CO2 concentration profiles than when experimentally-observed wind speed profiles, which were constant with height in the lower canopy, were used. This finding suggests that much of the lower canopy airflow was not direct mass flow in the downwind direction. Eddy diffusivity profiles which showed a within-canopy local minimum resulted in arestriction in the predicted loss of CO2 out of the canopy system. Two-dimensional plots of predicted null vertical flux and CO2 concentration portrayed vividly the turbulent diffusion and mass flow transport of CO2 from the line source.  相似文献   

20.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号