首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
用Nino 3指数、印度洋单极指数、偶极子指数描述热带太平洋、印度洋海表温度 (SST)的年际异常 ,季节分析表明 :冬季Nino3区与热带印度洋海表温度距平 (SSTA)相互关系表现为单极 ,且 1976年以后两者的相互关系减弱 ,其可能原因 :一是冬季是ENSO(厄尔尼诺 )事件的盛期 ;二是冬季西太平洋暖水区东移 ,造成两洋的垂直纬向环流耦合减弱。夏季两者相互关系表现为偶极 ,1976年以后两者的相互关系加强 ,其可能原因 ,一是夏季是偶极子盛期 ,ENSO事件的发展期 ;二是夏季西太平洋暖水区虽然东移 ,但暖水区位置偏北 ,且东南印度洋的上升支强度增大 ,造成两洋的纬向环流耦合更强烈  相似文献   

2.
Based on the monthly average SST and 850 hPa monthly average wind data,the seasonal,interannual and long-term variations in the eastern Indian Ocean warm pool(EIWP) and its relationship to the Indian Ocean Dipole(IOD),and its response to the wind over the Indian Ocean are analyzed in this study.The results show that the distribution range,boundary and area of the EIWP exhibited obviously seasonal and interannual variations associated with the ENSO cycles.Further analysis suggests that the EIWP had obvious l...  相似文献   

3.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

4.
We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South China Sea monsoon intensity had an obvious interdecadal variation with a decreasing trend. Variability of the monsoon was significantly correlated with latent heat flux in the Kuroshio area and tropical Pacific Ocean. Variability of latent heat flux in the Kuroshio area had an interdecadal increasing trend, while that in the tropical Pacific Ocean had an interdecadal decreasing trend. Latent heat flux variability in these two sea areas was used to establish a latent heat flux index, which had positive correlation with variability of the South China Sea monsoon. When the latent heat flux was 18 months ahead of the South China Sea monsoon, the correlation coefficient maximized at 0.58 (N=612), with a 99.9% significance level of 0.15. Thus, it is suggested that latent heat flux variability in the two areas contributes greatly to interdecadal variability of the South China Sea monsoon.  相似文献   

5.
The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Ni?o/La Ni?a were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm~(-2) in September.  相似文献   

6.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

7.
1 INTRODUCTION In southern high latitudes, recent observations have shown a standing mode of ACW (Antarctic Circumpolar Wave) with eastward propagation across the Southern Ocean of the Antarctic in co- varying SST (sea surface temperature) and SLP (sea le…  相似文献   

8.
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the “oceanic channel dynamics” and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.  相似文献   

9.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   

10.
Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E–75°E, 0°–10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.  相似文献   

11.
冬夏季热带太平洋至印度洋次表层海温变化的模态特征   总被引:1,自引:1,他引:0  
采用美国Scripps海洋研究所的1955—1998年全球海洋上层海水温度月距平资料,对热带太平洋至印度洋各层海温进行经验正交函数分解,分析其主要模态特征。结果表明:热带太平洋至印度洋次表层海温场主要表现出东、西太平洋海温异常反位相变化的特征,异常强度冬季明显强于夏季。冬季赤道东太平洋40m层,东印度洋至西太平洋120m层,夏季赤道东太平洋40m层,东印度洋至西太平洋160m层为海温异常的显著区域。冬季0—60m层第一特征向量表现出厄尔尼诺(拉尼娜)模态特征,第二特征向量表现出海温异常的东西运移模态特征,80—400m层第一特征向量表现出西太平洋暖池模态特征,第二特征向量表现出海温异常的东西运移模态特征。夏季0—60m层特征向量表现出厄尔尼诺(拉尼娜)模态,80—400m层特征向量表现出西太平洋暖池模态特征。  相似文献   

12.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

13.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

14.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

15.
The South China Sea (SCS) is significantly influenced by El Niño and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Niño events. During and after the mature phase of El Niño, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of El Niño, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an El Niño year.  相似文献   

16.
In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(E1 Nino-Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture (SST) is conspicuous both monthly and armaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and LaNlra. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area.  相似文献   

17.
热带海洋热状况是影响中国气候变化的主要因子之一,为了研究热带次表层海温如何影响中国气候,通过相关计算和合成分析等方法讨论了热带太平洋至印度洋次表层海温异常对中国东部夏季降水和温度的影响。结果表明:当冬季赤道东印度洋至西太平洋次表层海温偏暖(偏冷),中印度洋和东太平洋次表层海温偏冷(偏暖),夏季,长江中下游地区降水偏少(偏多),华南、华北和东北大部地区降水偏多(偏少);中国东部大范围高温(低温)。其可能的影响途径为,东亚夏季风环流对热带次表层海温异常的响应导致了其年际变化,进而引起中国东部夏季气候的异常分布。  相似文献   

18.
This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying El Niño. Observation data and the Fast Ocean-Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i.e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying El Niño. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.  相似文献   

19.
Sea level observed by altimeter during the 1993–2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to El Niño and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An ‘enigma’ is revealed that the correlation between the thermosteric sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977–1998, whereas there appears a relatively weak positive correlation during the period 1945–1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.  相似文献   

20.
1 Introduction TheMadden JulianOscillation (MJO)isastrongatmosphericconvection phenomenonoccurringovertheEasternIndianOceanandtheTropicalWesternPacific,usuallyinregionswithseasurfacetempera tures (SSTs)over 2 9℃ .Theeastwardmovingofalarge scalecirculat…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号