首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of the Cosmos-900 satellite observ ations of plasma density inhomogeneities in the geomagnetic equator region and the longitudinal distributions of the equatorial spread-F, according to the Intercosmos-19 satellite data are presented. It is show n that the dependence of radiosignal propagation in the ionosphere on geophysical parameters is related to development of the electrostatic instability of the inhomo-geneous ionospheric plasma. The longitudinal dependence of the spread-F, can reflect the influence of the energetic sources, located outside the ionospheric layer that scatters a radio pulse, on the ionosphere. The manifestation of the longitudinal effect in the equatorial spread-F, in the Atlantic region can be explained by the influence of the cone instability on the plasma electrodynamics in the South Atlantic geomagnetic anomaly.  相似文献   

2.
We present the results of complex experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the European Incoherent Scatter Scientific Association (EISCAT) facilities. During the ionospheric F-region heating by powerful extraordinary (X-mode) polarized HF radiowaves under the conditions of heating near the critical f H frequency f Hf x F2 of the extraordinary wave of the F2-layer, we were first to detect the excitation of intense artificial small-scale ionospheric irregularities (ASIs), accompanied by electron temperature increases by approximately 50%. The results of coordinated satellite and ground-based observations of the powerful HF radiowave impact on the high-latitude ionosphere are considered. During ionospheric F-region heating by powerful HF radiowaves of ordinary polarization (O-mode) during evening hours, the phenomenon of ion outflow accompanied by electron temperature increases and thermal plasma expansion was revealed. Concurrent DMSP-F15 satellite measurements at a height of about 850 km indicate an O+ ion density increase. The CHAMP satellite observations identified ULF emissions at the modulation frequency (3 Hz) of the powerful HF radiowave, generated during modulated emissions of the powerful HF radiowave of O-polarization and accompanied by a substantial increase in the electron temperature and ASI generation.  相似文献   

3.
电离层不规则结构的形成和演化与电离层等离子体不稳定性密切相关 .长期以来 ,在中低纬区扩展 -F现象的研究中 ,没有考虑电离层上下层结之间的相互作用 .本文从理论上全面探讨了在中纬度地区 ,E区可变的Pedersen电导率和Hall电导率 ,与F区可变的Pedersen电导率的共同作用对F区梯度漂移不稳定性的影响 ,导出了存在这种耦合时电离层梯度漂移不稳定性的统一表达式 .这一耦合理论不但解释了实际观测中发现的 ,在某些地方电离层F区顶部的不稳定性发生率要高于F区底部这一现象 ;同时还表明 ,电离层E区与F区的耦合对F区夜晚梯度漂移不稳定性的形成不仅会有阻碍作用 ,同时还使得中、低纬度地区的扰动增长具有了方向的选择性 .该理论的一个重要结论是 ,F区中某一地区能否发展出梯度漂移不稳定性 ,并不完全由当地电离层F区的状态决定 ,同一根磁力线连接的、位于不同纬度地区的E区层结对其发展和演化也会有相当大的影响 .  相似文献   

4.
The interaction between the Earth’s ionosphere and magnetosphere in a situation when artificial disturbances are generated in the F region of the auroral ionosphere with the EISCAT/Heating facility is studied. An experiment was performed in the daytime when the facility effective radiated power changed in a stepwise manner. Wavelike disturbances with periods of (130–140) s corresponding to Pc4 pulsations were simultaneously registered by the method of bi-static backscatter and with ground magnetometers. The variations in the Doppler frequency shift were correlated with the changes in the facility power. Incoherent scatter radar measurements at a frequency of 930 MHz (Tromsö) and numerical calculations were used in an analysis. It has been indicated that the ionospheric drift of small-scale artificial ionospheric irregularities was modulated by magnetospheric Alfvén waves. The possible effect of powerful HF radioemission on the Alfvén wave amplitude owing to the modification of the magnetospheric resonator ionospheric edge reflectivity and the generation of an outgoing Alfvén wave above the region where the ionospheric conductivity is locally intensified has been considered.  相似文献   

5.
With the use of data from topside sounding on board the Interkosmos-19 (IK-19) satellite, the region of permanent generation of large-scale irregularities in the daytime winter ionosphere of the Southern Hemisphere is differentiated. This region is characterized by low values of foF2 and hmF2 and occupies a rather large latitudinal band, from the equatorial anomaly ridge to ~70° S within the longitudinal range from 180° to 360°. Irregularities with a dimension of hundreds kilometers are regularly observed in the period from 0700–0800 to 1800–1900 LT, i.e., mainly in the daytime. In the IK-19 ionograms, they normally appear in the form of an extra trace with a critical frequency higher than that of the main trace reflected from the ionosphere with lower density. The electron density in the irregularity maximum sometimes exceeds the density of the background ionosphere by nearly a factor of 3. A model of the ionosphere with allowance for its irregular structure was created, and it was shown on the basis of trajectory calculations how the IK-19 ionograms related to these irregularities are formed. A possible mechanism of the generation of large-scale irregularities of the ionospheric plasma is discussed.  相似文献   

6.
化学物质释放激发中低纬扩展F的数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
利用离子和电子动量方程、连续性方程以及电流连续性方程建立了适合描述中低纬spread-F发展的物理模型,并对模型进行了数值求解,讨论了利用H2O释放来激发电离层Rayleigh-Taylor不稳定性的可能性. 结果表明,电离层处于不稳定状态时,H2O在电离层底部释放后,造成电子的大量消耗,增强了峰值高度以下电子的密度梯度,有利于spread-F的发展,在spread-F发展的过程中,释放中心附近会形成电子密度的消耗区,两侧出现密度的增强区;而电离层比较稳定时,初始扰动会逐渐稳定下来,但化学物质释放仍能造成电子较长时间、较大范围的扰动.  相似文献   

7.
The method for estimating the behavior of the ionospheric irregularity motion vector in the artificially disturbed HF ionospheric region has been proposed, and this behavior has been analyzed based on the simultaneous Doppler observations performed on several paths using the method of bi-static backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities. The Doppler measurements were performed during the modification of the auroral ionosphere by powerful HF radiowaves emitted by the EISCAT heating facility (Tromsø, Norway). It has been obtained that the dynamics of the ionospheric irregularity directions in the F region, calculated based on the Doppler measurements of the total vector of the ionospheric irregularity velocity above the Tromsø EISCAT radar at a frequency of 931 MHz, is in satisfactory agreement with such calculations performed using the three-position method.  相似文献   

8.
T. Ogawa 《Annales Geophysicae》1997,14(12):1454-1461
We briefly overview the radar observations that have been made for 30 years at Syowa Station, Antarctica for studying small-scale electron-density irregularities in the southern high-latitude E- and F-region ionosphere. Some observational results (i.e., long-term variations of radio aurora, Doppler spectra with narrow spectral widths and low Doppler velocities, and simultaneous observations of radar and optical auroras) from VHP radars capable of detecting 1.3- to 3-m scale irregularities are presented. A new 50-MHz radar system equipped with phased-antenna arrays began operation in February 1995 to observe two-dimensional behaviors of E-region irregularities. An HF radar experiment also began in February 1995 to explore decameter-scale E- and F-region irregularities in the auroral zone and polar cap. These two radars will contribute to a better understanding of the ionospheric irregularities and ionospheric physics at southern high latitudes.  相似文献   

9.
This work presents a new examination of the hypothesis regarding the equatorial origin of low He+ density plasma depletions (or subtroughs). For this purpose, we have conducted a detailed comparative analysis of longitudinal variations in the occurrence probabilities of subtroughs in both hemispheres and variations in the occurrence probabilities of equatorial F-region irregularities (EFIs), equatorial spread F (RFS and ESF), and equatorial plasma bubbles (EPBs). Taking into consideration the seasonal dependence and some peculiarities of magnetic field variations in different hemispheres, a conclusion has been reached regarding the similarity between longitudinal statistical occurrences of subtroughs and equatorial ionospheric F-region irregularities. In addition, another piece of evidence in favor of the similarity of the nature of the above-mentioned phenomena has been obtained. We have got a confirmation once again that low He+ density depletions (or subtroughs) can be rightfully considered as equatorial plasma “bubbles,” which can be observed at altitudes of the topside ionosphere as depletions in the He+ density.  相似文献   

10.
The physical mechanism by which the regions with increased or decreased total electron content, registered by measuring delays of GPS satellite signals before strong earthquakes, originate in the ionosphere has been proposed. Vertical plasma transfer in the ionospheric F 2 region under the action of the zonal electric field is the main disturbance formation factor. This field should be eastward, generating the upward component of plasma electromagnetic drift, in the cases of increased total electron content at midlatitudes and deepened minimum of the F 2 layer equatorial anomaly. Upward plasma drift increases electron density due to a decrease in the O+ ion loss rate at midlatitudes and decreases this density above the equator due to an enhancement of the fountain effect (plasma discharge into the equatorial anomaly crests). The pattern of the spatial distribution of the seismogenic electric field potential has been proposed. The eastward electric field can exist in the epicentral region only if positive and negative electric charges are located at the western and eastern boundaries of this region, respectively. The effectiveness of the proposed mechanism was studied by modeling the ionospheric response to the action of the electric field generated by such a charge configuration. The results of the numerical computations indicated that the total electron content before strong earthquakes at middle and low latitudes is in good agreement with the observations.  相似文献   

11.
The variations in the electron number density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift in the geomagnetic west-geomagnetic east direction perpendicularly to the electric (E) and geomagnetic (B) fields during a geomagnetically quiet period on December 7, 1989, at high solar activity have been studied based on a three-dimensional nonstationary theoretical model of electron number densities and temperatures in the ionospheric F region. Calculated and measured NmF2 values for 12 low-latitude ionospheric sounding stations have been compared. When the zonal E × B plasma drift is ignored, the NmF2 values become smaller by up to a factor of 3 under nighttime conditions in the low-latitude ionosphere. The average effect of the zonal E × B plasma drift on NmF2 in the low-latitude ionosphere is larger during winter nights than under summer nighttime conditions.  相似文献   

12.
A unified picture of plasma irregularities in equatorial spread F is developed from the analysis of satellite, sounding rocket, and coherent scatter radar observations. The coherent scatter data are analyzed using a new in-beam radar imaging technique that permits direct comparison between radar data, in situ data, and computer simulations of the irregularities. Three varieties of irregularities, all produced by ionospheric interchange instabilities, are found to occur. Thin bottom-type layers are composed of waves with primary transverse wavelengths less than about 1 km and with significant parallel wavenumbers. These exist on magnetic flux tubes controlled by the E region dynamo and drift westward in the postsunset ionosphere. A nonlocal analysis is used to calculate their linear growth rate. When the F region dynamo takes control of the flux tube, bottomside irregularities can emerge. These are more robust irregularities with longer primary wavelengths and which exhibit greater vertical development. Nonlinear analyses explain the appearance of steepened structures in rocket observations and solitary waves in satellite observations of bottomside layers. The one-dimensional spectra of these irregularities obey power laws but are anisotropic and have variable spectral indices and spectral breaks. Very strong polarization electric fields can eject large regions of deeply depleted plasma through the F peak and form topside irregularities. Theoretical calculations supported by satellite data show that ion inertia may become important for topside irregularities. The one-dimensional spectra of irregularities in the inertial regime obey a k−5/3 power law, but strong plasma inhomogeneity implies that Kolmogorov weak turbulence is not the explanation. Topside depletions are shown to bifurcate and also to pinch off from the bottomside.  相似文献   

13.
This work is devoted to a numerical simulation of the equatorial ionosphere, performed using the GSM TIP model completed with a new block for calculating the electric field. It has been indicated that the usage of the wind system calculated according to the MSIS-90 model makes it possible to reproduce the electromagnetic drift velocities at the equator, the effect of the F2-layer stratification, and the appearance of the F3 layer in the equatorial ionosphere. The calculations performed using the modified GSM TIP model made it possible to detect a maximum in the electron density vertical profile at an altitude of ∼1000 km, formed by H+ ions, which we called the G layer. If this layer actually exists, it can be observed during sounding the low-latitude ionosphere from satellites during dark time of day.  相似文献   

14.
The scattered reflections and multiple traces regularly recorded on the topside sounding ionograms of the Interkosmos-19 satellite in the frequency range of 7–10 MHz are considered. The reflected radio signals in this frequency range appear both above and below the critical frequency of the regular layer F2. They are observed at all altitudes of the topside ionosphere from hmF2 to a satellite altitude of 1000 km. It is shown that these phenomena regularly appear at high latitudes (≥60° ILAT) and, less often, in the equatorial region. The scattered reflections indicate the presence of small-scale irregularities, and continuous traces are a consequence of total internal reflection from large-scale irregularities. Small-scale irregularities evidently form within a large-scale irregularity. Ray tracing shows that the size of large-scale irregularities is hundreds of kilometers in height and tens of kilometers in latitude. The appearance of scattered reflections and multiple traces at high latitudes is nearly independent of local time; in the equatorial region, they appear only in the interval of 20–08 LT. All of this agrees well with other observations of irregularities in the ionospheric plasma of different scales.  相似文献   

15.
The temporal and spatial correlation of variations in the F2-layer critical frequency in various solar and geophysical conditions are considered based on a large array of experimental data. The possible extrapolation of ionospheric observational data is studied based on the obtained results on the stability of the correlation in time and space. It is shown that it is possible to use the obtained results for rapid short-term ionospheric forecast. Moreover, the data on the temporal and spatial correlation radius (at the level of a few hours and thousand kilometers) are used to study the irregular structure of the ionosphere and to determine the characteristic dimension of large-scale irregularities and apparent velocities of their motion.  相似文献   

16.
The results of ionosphere sounding in Yakutsk during the September 16, 2004, earthquake that occurred in east Yakutia are presented. Variations in the critical frequency and height of F 2-layer and the radio reflection arrival angles illustrating the dynamics of the ionospheric disturbance are shown.  相似文献   

17.
Additional strongly remote (up to 2000 km) radio-signal reflection traces on Intercosmos-19 ionograms obtained in the equatorial ionosphere have been considered. These traces, as a rule, begin at frequencies slightly lower than the main trace cutoff frequencies, which indicates that an irregularity with a decreased plasma density exists here. The waveguide stretched along the magnetic-field line is such an inhomogeneity in the equatorial ionosphere. The ray tracing confirm that radio waves propagate in a waveguide and make it possible to determine the typical waveguide parameters: ?δN e ≥ 10%, with a diameter of 15–20 km. Since the waveguide walls are smooth, an additional trace is always recorded distinctly even in the case in which main traces were completely eroded by strong diffusivity. Only one additional trace (of the radio signal X mode) is usually observed one more multiple trace is rarely recorded. Waveguides can be observed at all altitudes of the equatorial ionosphere at geomagnetic latitudes of ±40°. The formation of waveguides is usually related to the formation of different-scale irregularities in the nighttime equatorial ionosphere, which result in the appearance of other additional traces and spread F.  相似文献   

18.
In contrast to the way that the spreading of irregularities in a plasma is usually considered, the diffusion spreading of irregularities stretched along the geomagnetic field B is examined using a three-dimensional rigorous numerical model of quasi-neutral diffusion in the presence of a magnetic field, in conjunction with the actual height variations of the diffusion and conductivity tensors in the ionosphere. A comparison with the earlier constructed approximate model of unipolar diffusion was made. As in the previous case, the same peculiarities of irregularity spreading in the inhomogeneous background ionospheric plasma were observed. The accuracy of the approximate model for describing the process of spreading of anisotropic ionospheric irregularities is established. Time relaxation effects of real heating-induced ionospheric irregularities on their scale transverse to B are presented using the approximate analytical model for the case of a quasi-homogeneous ionospheric plasma. The calculated results have a vivid physical meaning and can be directly compared with experimental data on the radiophysical observations of artificial heating-induced irregularities created by powerful radio waves in the ionosphere.  相似文献   

19.
在地面上用无线电方法研究电离层时,通常只利用电离层反射的一次回波,但是利用二次回波来研究电离层也是可能的。利用二次回波提供的补充知识,特別是利用一次和二次回波的同时观测结果的相互对比,在某些情况下,对电离层物理和电波传播的研究,具有特别的意义。在这篇文章中,将对垂直採测时从电离层反射的二次回波波場和振幅的统计特性,以及一次和二次回波之间的统计联系,进行一些理论上的计算;并根据这些计算结果,讨论一下利用二次回波研究电离层和电波传播吋的若干问題。  相似文献   

20.
Plasma drift data from the AE-E satellite are spectrally analyzed to investigate the characteristics of the flow in the topside equatorial F region ionosphere during strong spread F conditions. Plasma flow around rapidly rising depletions is thought to exhibit behavior similar to two-dimensional Kolmogorov turbulence, but only on flux tubes with sufficiently small integrated ion–neutral collision frequencies. We find that one-dimensional spectra computed from vertical plasma drift measurements made in such depletions on such flux tubes tend to display a −5/3 spectral index over scale sizes from about 1 to 100km, suggesting the operation of an inverse energy cascade. This universal spectral form is evidence of an inertial regime of the underlying ionospheric interchange instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号