首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New radiometric ages from the Subpenninic nappes (Eclogite Zone and Rote Wand – Modereck Nappe, Tauern Window) show that phengites formed under eclogite-facies metamorphic conditions retain their initial isotopic signature, even when associated lithologies were overprinted by greenschist- to amphibolite-facies metamorphism. Different stages of the eclogite-facies evolution can be dated provided 40Ar/39Ar dating is combined with micro-structural analyses. An age of 39 Ma from the Rote Wand – Modereck Nappe is interpreted to be close to the burial age of this unit. Eclogite deformation within the Eclogite Zone started at the pressure peak along distinct shear zones, and prevailed along the exhumation path. An age of ca. 38 Ma is only observed for eclogites not affected by subsequent deformation and is interpreted as maximum age due to the possible influence of homogenously distributed excess argon. During exhumation deformation was localised along distinct mylonitic shear zones. This stage is mainly characterised by the formation of dynamically recrystallized omphacite2 and phengite. Deformation resulted in the resetting of the Ar isotopic system within the recrystallized white mica. Flat argon release spectra showing ages of 32 Ma within mylonites record the timing of cooling along the exhumation path, and the emplacement onto the Venediger Nappe. Ar-release patterns and 36Ar/40Ar vs.39Ar/40Ar isotope correlation analyses indicate no significant 40Ar-loss after initial closure, and only a negligible incorporation of excess argon. From the pressure peak onwards, eclogitic conditions prevailed for almost 8–10 Ma.  相似文献   

2.
The western cordilleras of the Northern Andes (north of 5°S) are constructed from allochthonous terranes floored by oceanic crust. We present 40Ar/39Ar and fission-track data from the Cordillera Occidental and Amotape Complex of Ecuador that probably constrain the time of terrane collision and post-accretionary tectonism in the western Andes. The data record cooling rates of 80–2 °C/my from temperatures of 540 °C, during 85 to 60 Ma, in a highly tectonised mélange (Pujilí unit) at the continent–ocean suture and in the northern Amotape Complex. The rates were highest during 85–80 Ma and decelerated towards 60 Ma. Cooling was a consequence of exhumation of the continental margin, which probably occurred in response to the accretion of the presently juxtaposing Pallatanga Terrane. The northern Amotape Complex and the Pujilí unit may have formed part of a single, regional scale, tectonic mélange that started to develop at ~85 Ma, part of which currently comprises the basement of the Interandean Depression. Cooling and rotation in the allochthonous, continental, Amotape Complex and along parts of the continent–ocean suture during 43–29 Ma, record the second accretionary phase, during which the Macuchi Island Arc system collided with the Pallatanga Terrane. Distinct periods of regional scale cooling in the Cordillera Occidental at 13 and 9 Ma were synchronous with exhumation in the Cordillera Real and were probably driven by the collision of the Carnegie Ridge with the Ecuador Trench. Finally, late Miocene–Pliocene reactivation of the Chimbo–Toachi Shear Zone was coincident with the formation of the oldest basins in the Interandean Depression and probably formed part of a transcurrent or thrust system that was responsible for the inception and subsequent growth of the valley since 6 Ma.  相似文献   

3.
New single‐grain‐fusion muscovite and paragonite 40Ar/39Ar data from eclogite and blueschist units exposed in the Tauern Window, Eastern Alps yield a range of apparent ages from 90 to 23 Ma. These apparent ages are generally older than expected for 40Ar/39Ar cooling ages, given constraints from other geochronological systems such as Rb–Sr and U–Pb. Numerical Ar‐in‐muscovite diffusion models for Tauern Window nappe P–T paths in an open system suggest that 40Ar/39Ar ages should lie between 29 and 24 Ma, and that they should constrain cooling and decompression following the post‐high pressure Barrovian overprint. The measured ranges of apparent 40Ar/39Ar dates suggest that the assumption of open system behaviour is not valid for this region. The local and/or regional generation of fluid during exhumation promoted pervasive recrystallization of high pressure lithologies throughout the Tauern Window to greenschist and amphibolite facies assemblages. The old apparent 40Ar/39Ar white mica dates in all lithologies are therefore interpreted as being due to inefficient removal of grain boundary Ar by the grain boundary fluids during the Barrovian overprint, due to high Ar concentrations or limited connectivity or both. This caused spatially (mm‐scale) and temporally variable fluxes of Ar out of, and probably into, white mica in both metasedimentary and metabasic lithologies.  相似文献   

4.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


5.
Multimineral Rb/Sr internal isochrons from eclogite facies rocks of the Eclogite Zone (Tauern Window, Eastern Alps) consistently yield an Early Oligocene age of 31.5±0.7 Ma. This age has been obtained both for late-prograde, dehydration-related eclogitic veins, and for rocks variably deformed and recrystallized under eclogite facies conditions (2.0–2.5 GPa, 600°C). Initial Sr-isotopic equilibria among all phases indicate absence of significant post-eclogitic isotope redistribution processes, therefore the ages date eclogite facies assemblage crystallization. Equilibria also prove that no prolonged pre-eclogite facies history is recorded in the rocks. Instead, subduction, prograde mineral reactions, and eclogitization proceeded rapidly. Fast exhumation immediately after eclogitization, with minimum rates >36 mm/a is inferred from a 31.5±0.5 Ma internal mineral isochron age of a post-eclogitic greenschist facies vein assemblage. Such rates equal typical subduction rates. Late Eocene to Early Oligocene subduction of the European continental margin, with subsequent rapid exhumation of high-pressure nappe complexes has previously been recognized only in the Western Alps. The new data signify synchronous continental collision all along the Alpine belt. Our results demonstrate the unique potential of Rb/Sr assemblage system analysis for precise dating of both eclogite facies and post-eclogitic events, thus for precisely constraining exhumation rates of deep-seated rocks, and for straightforward linkage of petrologic evidence with isotopic ages.  相似文献   

6.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

7.
The40Ar-39Ar degassing spectra of white micas and amphiboles from three tectonic units of the central Tauern Window (Pennine basement and cover in the Eastern Alps) have been measured. White micas are classified as (1) pre-Alpine low-Si relic micas with an age value of 292 Ma, variously disturbed by the Alpine metamorphism; (2) Alpine phengitic micas of variable composition with an age between 32 and 36 Ma; (3) Alpine low-Si micas with a maximum age of 27 Ma. We attribute the higher Alpine ages to a blueschist facies event, whereas the lower age reflects the late cooling of the nappe pile. Blueschist facies phengites from the basement (Lower Schieferhülle) and the tectonic cover (Upper Schieferhülle) crystallized at a temperature below the closure temperature (T c) for argon diffusion in white mica and record ages of 32 to 36 Ma. At the same time a thin, eclogite facies unit (Eclogite Zone) was thrust between the Lower and the Upper Schieferhülle and cooled from eclogite facies conditions at about 600°C at 20 kbar to blueschist facies conditions at 450°C or even 300°C at >10 kbar. Eclogite facies phengites closed for argon diffusion and record cooling ages, coinciding with the crystallization ages in the hanging and the footwall unit. Amphibole age spectra (actinolite, glaucophane, barroisite) are not interpretable in terms of geologically meaningful ages because of excess argon.  相似文献   

8.
The Peripheral Schieferhülle of the Tauern Window of the Eastern Alps represents post-Hercynian Penninic cover sequences and preserves a record of metamorphism in the Alpine orogeny, without the inherited remnants of Hercynian events that are retained in basement rocks. The temperature-time-deformation history of rocks at the lower levels of these cover sequences have been investigated by geochronological and petrographic study of units whose P-T evolution and structural setting are already well understood. The Eclogite Zone of the central Tauern formed from protoliths with Penninic cover affinities, and suffered early Alpine eclogite facies metamorphism before tectonic interposition between basement and cover. It then shared a common metamorphic history with these units, experiencing blueschist facies and subsequent greenschist facies conditions in the Alpine orogeny. The greenschist facies phase, associated with penetrative deformation in the cover and the influx of aqueous fluids, reset Sr isotopes in metasediments throughout the eclogite zone and cover schists, recording deformation and peak metamorphism at 28-30 Ma. The Peripheral Schieferhülle of the south-east Tauern Window yields Rb-Sr white mica ages which can be tied to the structural evolution of the metamorphic pile. Early prograde fabrics pre-date 31 Ma, and were reworked by the formation of the large north-east vergent Sonnblick fold structure at 28 Ma. Peak metamorphism post-dated this deformation, but by contrast to the equivalent levels in the central Tauern, peak metamorphic conditions did not lead to widespread homogenization of the Sr isotopes. Localized deformation continued into the cooling path until at least 23 Ma, partially or wholly resetting Sr white mica ages in some samples. These isotopic ages may be integrated with structural data in regional tectonic models, and may constrain changes in the style of crustal deformation and plate interaction. However, such interpretations must accommodate the demonstrable variation in thermal histories over small distances.  相似文献   

9.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

10.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

11.
Hornblende incremental heating 40Ar/39Ar data were obtained from augen gneiss and amphibolite of the Sveconorwegian Province of S. Norway. In the Rogaland-Vest Agder and Telemark terranes, four pyroxene-rich samples, located close (≤ 10 km) to the anorthosite-charnockite Rogaland Igneous Complex, define an age group at 916 + 12/ − 14 Ma and six samples distributed in the two terranes yield another group at 871 + 8/ − 10 Ma. The first age group is close to the reported zircon U---Pb intrusion age of the igneous complex (931 ± 2 Ma) and the regional titanite U---Pb age (918 ± 2 Ma), whereas the second group overlaps reported regional mineral Rb---Sr ages (895-853 Ma) as well as biotite K---Ar ages (878-853 Ma). In the first group, the comparatively dry parageneses of low-P thermal metamorphism (M2) associated with the intrusion of the igneous complex are well developed, and hornblende 40Ar/39Ar ages probably record a drop in temperature shortly after this phase. In other hornblende + biotite-rich samples, with presumably a higher fluid content, the hornblende ages are probably a response to hornblende-fluid interaction during a late Sveconorwegian metamorphic or hydrothermal event. A ca 220 m.y. diachronism in hornblende 40Ar/39Ar ages is documented between S. Telemark (ca 870 Ma) and Bamble (ca 1090 Ma). Differential uplift between these terranes was mostly accommodated by shearing along the Kristiansand-Porsgrunn shear zone. The final stage of extension along this zone occurred after intrusion of the Herefoss post-kinematic granite at 926 ± 8 Ma. On the contrary, the southern part of the Rogaland-Vest Agder and Telemark terranes share a common cooling evolution as mineral ages are similar on both sides of the Mandal-Ustaoset Line the tectonic zone between them. The succession within 20 m.y. of a voluminous pulse of post-tectonic magmatism at 0.93 Ga, a phase of high-T-low-P metamorphism at 0.93-0.92 Ga, and fast cooling at a regional scale ca 0.92 Ga, suggests that the southern parts of Rogaland-Vest Agder and Telemark were affected by an event of post-thickening extension collapse at that time. This event is not recorded in Bamble.  相似文献   

12.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

13.
New petrologic and 40Ar/39Ar geochronologic data constrain conditions of Alpine metamorphism along the northwestern border of the Tauern Window. The P-T estimations based on phengite barometry were determined for samples from units of the Lower Austroalpine nappe complex exposed above the Southpenninic interior of the Tauern Window, and from upper parts of the Southpenninic “Bündner Schiefer” sequence. Results suggest that both Mesozoic metasedimentary nappe units (Reckner and Hippold Nappes) and an ophiolitic nappe (Reckner Complex) of the Lower Austroalpine nappe complex have been metamorphosed at pressures between 8 and 10.5 kbar and temperatures around 350 °C. The structurally highest Lower Austroalpine unit (Quartzphyllite Nappe) was not affected by high-pressure metamorphism and records maximum P-T conditions of approximately 4 kbar and 400 °C. Highest parts of the structurally underlying Southpenninic Bündner Schiefer sequence were metamorphosed at intermediate pressures (6–7 kbar). Temperatures increased in all structural units during decompression. Whole-rock 40Ar/39Ar plateau ages of silicic phyllites and cherts with abundant high-Si phengites record ages around 50 Ma in the Reckner Nappe, and 44–37 Ma in the Hippold Nappe and Southpenninic Bündner Schiefer sequence. These ages are interpreted to date closely the high-pressure metamorphism. The Lower Austroalpine-Southpenninic border area in the NW Tauern Window appears to have evolved along an indented, fragmented active continental margin where the Reckner Complex represents one of the oldest sections of the Southpenninic (Piemontais) Oceanic tract that was originally situated close to, or even within, the Lower Austroalpine continent. During closure of the Piemontais Ocean, the resultant subduction zone did not entrain components of the Reckner Complex or its cover sequences (Reckner and Hippold Nappes): therefore “Eoalpine” high-pressure metamorphism did not occur. Sequences exposed within the study area were subducted to relatively shallow depths during the last stage of consumption of oceanic crust and immediately prior to final continental collision. Received: 30 July 1996 / Accepted: 7 April 1997  相似文献   

14.
The western terranes exposed east of the Pan-African suture in western Hoggar (southwest Algeria), are reexamined in the light of new structural, petrologic and by the 40Ar/39Ar laser probe data on metamorphic micas and amphiboles. To the north, the Tassendjanet nappe includes the Paleoproterozoic basement, its Mesoproterozoic cover and mafic rocks representing the roots of a ca. 680 Ma arc overlain by Late Neoproterozoic andesites and volcanic greywackes. The nappe preserved at rather shallow crustal level in the east was emplaced southward (D1a) to southeastward (D2). In the south, two metamorphic suites are distinguished. The Tideridjaouine–Tileouine high-pressure metamorphic belt (T=550–600 °C, P=1.4–1.8 GPa) represents a slab of subducted continental material exposed along the western edge of the In Ouzzal granulite unit interpreted as a microcontinent. Differential exhumation of tectonic slices from the high-pressure belt occurred around 615–600 Ma through a system of west-directed recumbent folds (D1b). The Egatalis high grade belt in the west was intruded by syn-metamorphic gabbro–norite bodies. It includes unretrogressed low-pressure granulite facies rocks (T around 750–800 °C, P0.45 GPa) cooled at a rate of 15°/m.y. between 600 and 580 Ma, and followed by the emplacement of several late-kinematic granitic plutons. Final exhumation of the low-pressure, high-temperature metamorphic rocks, that are not found as pebbles in the molasse, took place in the Late Cambrian. The early and relatively fast cooling of the high-pressure and high-temperature metamorphic rocks of the southern part of the Tassendjanet terrane is at variance with the slow cooling of central Hoggar where repeated magmatic activity as young as Late Cambrian occurred [Lithos 45 (1998) 245].  相似文献   

15.
Metasediments in the southern Grossvenediger area (Tauern Window, Austria) were studied along a cross-section through rocks of increasing metamorphic grade from the margin of the Tauern Window in the south to the base of the Upper Schieferhülle, including the Eclogite Zone, in the north. In the southern part of the cross-section there is no evidence for a pre-late Alpine metamorphic history in the form of high-pressure relics or pseudomorphs. Mineral assemblages are characterized by the stability of tremolite + calcite, biotite + calcite and biotite + chlorite + calcite. In the northern part a more complete Alpine metamorphic evolution is preserved. Primary high-pressure assemblages are dolomite + quartz, tremolite + zoisite, zoisite + dolomite + quartz + phengite I and probably tremolite + dolomite + phengite I. Secondary, post-kinematic assemblages [tremolite + calcite, talc + calcite, phengite II + chlorite + calcite (+ quartz), biotite + chlorite + calcite, biotite + zoisite + calcite] formed as a result of the dominant late Alpine metamorphic overprint. The occurrence of biotite + zoisite + calcite is confined to the northernmost area and defines a biotite–zoisite–calcite isograd. P–T estimates based on standard thermobarometric techniques and on stability relationships of tremolite + calcite + dolomite + quartz and zoisite give consistent results. P–T conditions of the main Tertiary metamorphic overprint were 525° C, P= 7.5 ± 1 kbar in the northern part of the cross-section. The southern part was metamorphosed at lower temperatures of 430–470° C. The Si-content of phengites from this area is almost as high as that of phengites from the Eclogite Zone (Simax= 3.4 pfu). Pressures > 10 kbar at 420° C are suggested by phengite barometry according to Massone & Schreyer (1987). In the absence of high-pressure relics or pseudomorphs, these phengites, which lack late Alpine re-equilibration, are the only record that rocks of the southern part probably also experienced an early non-eclogitic high-pressure metamorphism.  相似文献   

16.
The Zhujiachong eclogite in the south‐eastern Dabieshan ultra‐high‐P terrane has been overprinted during retrograde metamorphism, with the development of garnet‐amphibolite mineral assemblages in most rocks in the outcrop. This study is focused on providing age constraints for the retrograde amphibolite facies and greenschist facies mineralogy by 40Ar/39Ar dating. By applying a novel approach of combining three different techniques for extracting argon: laser stepwise heating of single grains and small separates, a spot fusion technique by UV‐laser ablation microprobe on polished sections and an in vacuo crushing technique for liberating radiogenic argon from fluid inclusions, it is demonstrated that an internally consistent thermal history can be derived. The 40Ar/39Ar ages indicate that phengite formed before 265 Ma, probably during the ultra‐high‐P event. Ages associated with amphibolite facies retrograde metamorphism range from 242 to 217 Ma by the analyses of amphibole. Ages of c. 230 Ma were found for the symplectite matrix that formed during retrogression from eclogite pyroxene. Late stage hydrothermal activity leading to the formation of coarse‐grained paragonite and fluid inclusions in vein amphibole was dated at c. 200 Ma. These age results agree well with the mineral crystallization sequence observed from thin‐sections of the retrograded eclogite: phengite → paragonite and amphibole in matrix → amphibole in the corona.  相似文献   

17.
Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40Ar/39 Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40Ar/39 Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.  相似文献   

18.
Kinematic data from the internal zones of the Western Alps indicate both top-to-SE and top-to-NW shearing during synkinematic greenschist facies recrystallisation. Rb/Sr data from white micas from different kinematic domains record a range of ages that does not represent closure through a single thermal event but reflects the variable timing of synkinematic mica recrystallisation at temperatures between 300 and 450 °C. The data indicate an initial phase of accretion and foreland-directed thrusting at ca. 60 Ma followed by almost complete reworking of thrust-related deformation by SE-directed shearing. This deformation is localised within oceanic units of the Combin Zone and the base of the overlying Austroalpine basement, and forms a regional scale shear zone that can be traced for almost 50 km perpendicular to strike. The timing of deformation in this shear zone spans 9 Ma from 45 to 36 Ma. The SE-directed shear leads to local structures that cut upwards in the transport direction with respect to tectonic stratigraphy, and such structures have been interpreted in the past as backthrusts in response to ongoing Alpine convergence. However, on a regional scale, the top-to-SE deformation is related to crustal extension, not shortening, and is coincident with exhumation of eclogites in its footwall. During this extension phase, deformation within the shear zone migrated both spatially and temporally giving rise to domains of older shear zone fabrics intercalated with zones of localised reworking. Top-NW kinematics preserved within the Combin Zone show a range of ages. The oldest (48 Ma) may reflect the final stages of emplacement of Austroalpine Units above Piemonte oceanic rocks prior to the onset of extension. However, much of the top-to-NW deformation took place over the period of extension and may reflect either continuing or episodic convergence or tectonic thinning of the shear zone.40Ar/39Ar data from the region are complicated due to the widespread occurrence of excess 40Ar in eclogite facies micas and partial Ar loss during Alpine heating. Reliable ages from both eclogite and greenschist facies micas indicate cooling ages in different tectonic units of between 32 and 40 Ma. These ages are slightly younger than Rb/Sr deformation ages and suggest that cooling below ca. 350 °C occurred after juxtaposition of the units by SE-directed extensional deformation.Our data indicate a complex kinematic history involving both crustal shortening and extension within the internal zones of the Alpine Orogen. To constrain the palaeogeographic and geodynamic evolution of the Alps requires that these data be integrated with data from the more external zones of the orogen. Complexity such as that described is unlikely to be restricted to the Western Alps and spatially and temporally variable kinematic data are probably the norm in convergent orogens. Recognising such features is fundamental to the correct tectonic interpretation of both modern and ancient orogens.  相似文献   

19.
A multi-method geochronological approach is applied to unravelthe dynamics of a paired metamorphic belt in the Coastal Cordilleraof central Chile. This is represented by high-pressure–low-temperaturerocks of an accretionary prism (Western Series), and a low-pressure–high-temperatureoverprint in the retro-wedge with less deformed metagreywackes(Eastern Series) intruded by magmas of the coeval arc. A pervasivetransposition foliation formed in metagreywackes and interlayeredoceanic crust of the Western Series during basal accretion nearmetamorphic peak conditions (350–400°C, 7–11kbar) at 292–319 Ma (40Ar/39Ar phengite plateau ages).40Ar/39Ar UV laser ablation ages of phengite record strain-freegrain growth and recrystallization with a duration of 31–41Myr during a pressure release of 3–4 kbar. During earlyaccretion the main intrusion in the arc occurred at 305 Ma (Pb–Pbevaporation; zircon) and the Eastern Series was overprintedby a short high-temperature metamorphism at 3 kbar, 296–301Ma (40Ar/39Ar muscovite plateau ages). Fission-track ages ofzircon (206–232 Ma) and of apatite (80–113 Ma) aresimilar in both series, indicating synchronous cooling duringdistinct periods of exhumation. Early exhumation (period I)during continuing basal accretion proceeded with mean ratesof 0·19–0·56 mm/yr, suggesting that erosionin a tectonically active area was an important unroofing mechanism.At the same time mean rates were 0·03–0·05mm/yr in the Eastern Series, where crustal thickening was minor.A shallow granite intruded into the Western Series at 224 Ma,at the end of basal accretion activity, when exhumation ratesdecreased to 0·04–0·06 mm/yr in both seriesduring period II (100–225 Ma). Major extension, basinformation and local bimodal dyke intrusion at 138 Ma were accompaniedby mean cooling rates of 1–2°C/Myr. Accelerated coolingof 3–5°C/Myr at 80–113 Ma suggests a mid-Cretaceousconvergence event (period III). After 80 Ma cooling rates decreasedto 1–2°C/Myr (period IV). The pressure–temperature–deformation–timeinformation for subduction, basal accretion and exhumation inthe accretionary wedge of central Chile illustrates that theseprocesses reflect a continuous cyclic mass flow that lastednearly 100 Myr, while the retro-wedge remained stable. Afterthe cessation of accretion activity a similarly long periodof retreat of the subducting slab occurred; this ended withrenewed convergence and shortening of the continental margin. KEY WORDS: exhumation rates; Ar/Ar geochronology; fission-track geochronology; Chile; paired metamorphic belt  相似文献   

20.
Coesite- and microdiamond- bearing ultra-high pressure (UHP) eclogites in the North Qinling terrane have been widely retrogressed to amphibolites. Previous geochronological studies on these UHP rocks mainly focused on the timing of peak eclogite facies metamorphism. The Kanfenggou UHP metamorphic domain is one of the best-preserved coesite-bearing eclogite occurrences in the North Qinling terrane. In this study, mafic amphibolites and host schists from this domain were collected for 40Ar/39Ar dating to constrain their retrograde evolution. Two generations of amphibole are recognized based on their mineral parageneses and 40Ar/39Ar ages. A first generation of amphibole from garnet amphibolites yielded irregularly-shaped age spectra with anomalously old apparent ages. Isochron ages of 484–473 Ma and initial 40Ar/36Ar ratios of 3695–774 are obtained from this generation of amphibole, indicating incorporation of excess argon. Second generation amphibole occurs in epidote amphibolites yielded flat age spectra with plateau ages of 464–462 Ma without evidence for excess argon. These ages suggest that the amphibolite-facies metamorphism has taken place as early as 484 Ma and lasted until 462 Ma for the North Qinling UHP metamorphic rocks. Phengite from the country-rock schists yielded 40Ar/39Ar plateau ages of 426–396 Ma, with higher phengite Si contents associated with the older the plateau ages. Based on our new 40Ar/39Ar ages and previous zircon UPb geochronological data, we construct a new detailed pressure-temperature-time (P-T-t) path illustrating the retrograde metamorphism and exhumation rate of the North Qinling eclogites and host schists. The P-T-t path suggests that these UHP metamorphic rocks experienced initial medium-to-high exhumation rates (ca. 8.7 mm/yr) during the Early Ordovician (489–484 Ma), which was mainly derived from buoyancy forces. Subsequently, the exhumation rate decreased gradually from ~0.8 to 0.3 mm/yr from 484 to 426 Ma, which was probably governed by extension and/or erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号