首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The impact of climate change on rice yield in China remains highly uncertain. We examined the impact of the change of maximum temperature (Tmax) and minimum temperature (Tmin) on rice yields in southern China from 1967 to 2007. The rice yields were simulated by using the DSSAT3.5 (Decision Support System for Agro-technology Transfer)-Rice model. The change of Tmax and Tmin in rice growing seasons and simulated rice yields as well as their correlations were analyzed. The simulated yields of middle rice and early rice had a decreasing trend, but late rice yields showed a weak rise trend. There was significant negative correlation between Tmax and the early rice yields, as well as the late rice yields in most stations, but non-significant negative correlation for the middle rice yields. An obviously negative relationship was found between Tmin and the early and middle rice yields, and a significant positive relationship was found between Tmin and the late rice yields. It indicated that under the recent climate warming, the increased Tmax brought strong negative impacts on early rice yields and late rice yields, but a weak negative impact on the middle rice yields; the increased Tmin had a strong negative impact on the middle rice yields and the early rice yields, but a significant positive impact on the late rice yields. It suggested that it is necessary to adjust rice planting date and adapt to higher Tmin.  相似文献   

2.
The hydroclimatology of the Peruvian Amazon–Andes basin (PAB) which surface corresponding to 7% of the Amazon basin is still poorly documented. We propose here an extended and original analysis of the temporal evolution of monthly rainfall, mean temperature (Tmean), maximum temperature (Tmax) and minimum temperature (Tmin) time series over two PABs (Huallaga and Ucayali) over the last 40 years. This analysis is based on a new and more complete database that includes 77 weather stations over the 1965–2007 period, and we focus our attention on both annual and seasonal meteorological time series. A positive significant trend in mean temperature of 0.09 °C per decade is detected over the region with similar values in the Andes and rainforest when considering average data. However, a high percentage of stations with significant Tmean positive trends are located over the Andes region. Finally, changes in the mean values occurred earlier in Tmax (during the 1970s) than in Tmin (during the 1980s). In the PAB, there is neither trend nor mean change in rainfall during the 1965–2007 period. However, annual, summer and autumn rainfall in the southern Andes presents an important interannual variability that is associated with the sea surface temperature in the tropical Atlantic Ocean while there are limited relationships between rainfall and El Niño‐Southern Oscillation (ENSO) events. On the contrary, the interannual temperature variability is mainly related to ENSO events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the analyses of regional climate change features and the local urbanization effects on different weather variables over Southeast China. The weather variables considered are: daily mean (Tm), minimum (Tmin), and maximum (Tmax) near surface air temperature, diurnal temperature range (DTR), relative humidity (RH), and precipitation (P). With analysis of two datasets (a station dataset for the period from 1960 to 2005 that is mainly used and a grid dataset for the period 1960–2000), this study reveals that the trends in the variations of these weather variables can be separated into two periods, before and after 1984. Before 1984, there were no significant urbanization effects, and Tmin, RH, and P steadily increased but Tmax decreased, resulting in a considerable decrease in DTR and a slight decrease in Tm. After 1984, Tmin and Tmax increased considerably, and the urbanization influence on Tmin, but not Tmax, is observable. The urbanization effect causes an extra increasing trend in Tmin with a rate of about 0.6°C/decade and, accordingly, extra decreasing trends in DTR and RH. The analysis of the seasonal trends reveals that the urbanization influence results in a near-uniform increase of Tmin for all four seasons and a strong decrease of RH in summer and autumn. Moreover, there is no significant change in P at the annual scale and an increasing rate of 11.8%/decade in summer. With the urbanization influence, a considerable increase in P is noticeable at the annual scale; specifically, the increasing rates of 18.6%/decade in summer and 13.5%/decade in autumn are observed.  相似文献   

4.
Abstract

Estimates of trends of climatic changes at basin and state scales are required for developing adaptation strategies related to planning, development and management of water resources. In the present study, seasonal and annual trends of changes in maximum temperature (T max), minimum temperature (T min), mean temperature (T mean), temperature range (T range), highest maximum temperature (H max) and lowest minimum temperature (L min) have been examined at the basin scale. The longest available records over the last century, for 43 stations covering nine river basins in northwest and central India, were used in the analysis. Of the nine river basins studied, seven showed a warming trend, whereas two showed a cooling trend. The Narmada and Sabarmati river basins experienced the maximum warming and cooling, respectively. The majority of basins in the study area show increasing trend in T range, H max and L min. Seasonal analysis of different variables shows that the greatest changes in T max and T mean were observed in the post-monsoon season, while T min experienced the greatest change in the monsoon season. This analysis provides scenarios of temperature changes which may be used for sensitivity analysis of water availability for different basins, and accordingly in planning and implementation of adaptation strategies.  相似文献   

5.
Trends in extreme temperature indices in the Poyang Lake Basin,China   总被引:4,自引:3,他引:1  
Based on daily maximum and minimum temperature records at 78 meteorological stations in the Basin of China’s largest fresh water lake (Poyang Lake Basin), the temporal and spatial variability of 11 extreme temperature indices are investigated for the period 1959–2010. The analysis indicates that the annual mean of daily minimum temperature (Tmin) has increased significantly, while no significant trends were observed in the annual mean of daily maximum temperature (Tmax), resulting in a significant decrease in the diurnal temperature range. Trends and percentages of stations with significant trends in Tmin-related indices are generally stronger and higher than those in Tmax-related indices; however, no significant trends can be found in Tmax-related indices (TXMean, TX90p, TXx and TX10p) at both seasonal and annual time scale. Low correlations with Global-SST ENSO index are also detected in Tmax-related indices. Significant positive relationships can be found in Tmin-related indices (TNMean, TNx, TNn and TN90p), however, the most significant negative coefficient was also found in cold nights (TN10p) with the Global-SST ENSO index. Singular value decomposition (SVD) correlating extreme temperatures over the Poyang Lake Basin and the North Pacific SST indicates the East China Sea, Western Pacific and Bering Sea to be stronger linked with Tmin than Tmax with the first mode (SVD-1) explaining 90 and 94 % of annual Tmax and Tmin respectively.  相似文献   

6.
Different satellite-based radiation (Makkink) and temperature (Hargreaves-Samani, Penman-Monteith temperature, PMT) reference evapotranspiration (ETo) models were compared with the FAO56-PM method over the Cauvery basin, India. Maximum air temperature (Tmax) required in the ETo models was estimated using the temperature–vegetation index (TVX) and an advanced statistical approach (ASA), and evaluated with observed Tmax obtained from automatic weather stations. Minimum air temperature (Tmin) was estimated using ASA. Land surface temperature was employed in the ETo models in place of air temperature (Ta) to check the potency of its applicability. The results suggest that the PMT model with Ta as input performed better than the other ETo models, with correlation coefficient (r), averaged root mean square error (RMSE) and mean bias error (MBE) of 0.77, 0.80 mm d?1 and ?0.69 for all land cover classes. The ASA yielded better Tmax and Tmin values (r and RMSE of 0.87 and 2.17°C, and 0.87 and 2.27°C, respectively).  相似文献   

7.
This paper discusses the preliminary results of a study on the vegetation pattern and its relationship with meteorological parameters in and around Istanbul. The study covers an area of over 6800 km2 consisting of urban and suburban centers, and uses the visible and near-infrared bands of Landsat. The spatial variation of the Normalized Difference Vegetation Index (NDVI) and meteorological parameters such as sensible heat flux, momentum flux, relative humidity, moist static energy, rainfall rate and temperature have been investigated based on observations in ten stations in the European (Thracian) and Anatolian parts of Istanbul. NDVI values have been evaluated from the Landsat data for a single day, viz. 24 October 1986, using ERDAS in ten different classes. The simultaneous spatial variations of sensible heat and momentum fluxes have been computed from the wind and temperature profiles using the Monin-Obukhov similarity theory. The static energy variations are based on the surface meteorological observations. There is very good correlation between NDVI and rainfall rate. Good correlation also exists between: NDVI and relative humidity; NDVI, sensible heat flux and relative humidity; NDVI, momentum flux and emissivity; and NDVI, sensible heat flux and emissivity. The study suggests that the momentum flux has only marginal impact on NDVI. Due to rapid urbanization, the coastal belt is characterized by reduced NDVI compared to the interior areas, suggesting that thermodynamic discontinuities considerably influence the vegetation pattern. This study is useful for the investigation of small-scale circulation models, especially in urban and suburban areas where differential heating leads to the formation of heat islands. In the long run, such studies on a global scale are vital to gain accurate, timely information on the distribution of vegetation on the earth’s surface. This may lead to an understanding of how changes in land cover affect phenomena as diverse as the atmospheric CO2 concentrations, the hydrological cycle and the energy balance at the surface-atmosphere interface.  相似文献   

8.
The accuracy of atmospheric numerical model is important for the prediction of urban air pollution. This study investigated and quantified the uncertainties of meteorological and air quality model during multi-levels air pollution periods. We simulated the air quality of megacity Shanghai, China with WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) at both non-pollution and heavy-pollution episodes in 2012. The weather prediction model failed to reproduce the surface temperature and wind speed in condition of high aerosol loading. The accuracy of the air quality model showed a clear dropping tendency from good air quality conditions to heavily polluted episodes. The absolute model bias increased significantly from light air pollution to heavy air pollution for SO2 (from 2 to 14%) and for PM10 (from 1 to 33%) in both urban and suburban sites, for CO in urban sites (from 8 to 48%) and for NO2 in suburban sites (from 1 to 58%). A test of applying the Urban Canopy Model scheme to the WRF model showed fairly good improvement on predicting the meteorology field, but less significant effect on the air pollutants (6% for SO2 and 19% for NO2 decease in model bias found only in urban sites). This study gave clear evidence to the sensitivities of the model performance on the air pollution levels. It is suggested to consider this impact as a source for model bias in the model assessment and make improvement in the model development in the future.  相似文献   

9.
近年来城市化和大气污染对辐射收支的影响日益显著.本研究利用2013—2014年中国科学院大气物理研究所325m铁塔、南郊观象台、密云气象塔、上甸子区域大气本底站四个观测站点的辐射及自动站气象要素数据,采用南郊观象台的能见度资料将观测数据分为清洁天和污染天,并进行类比分析,以1月份为例,研究了北京地区大气污染和城郊差异对辐射收支的影响.结果表明:(1)从月平均值来看,各站污染天入射短波辐射均小于清洁天,衰减最大可达55.8W·m~(-2),直接辐射亦然,衰减最大可达161.1W·m~(-2),散射辐射相反,增加最大值为72.2W·m~(-2);长波辐射污染天大于清洁天,向下向上长波辐射增加最大值分别为85.0 W·m~2和70.0 W·m~(-2),且长波辐射的衰减与污染物浓度和大气温度相关;净辐射白天污染天小于清洁天,夜间相反.(2)从各站的对比可知,大气污染对入射短波辐射的衰减,南部郊区(13.2%)大于北部城区(7.4%),与北京地区"南北两重天"的污染物分布特征一致;且污染物对长短波辐射的影响呈现了从城区到郊区衰减率依次减小的现象.本研究为大气污染与气象条件的相互作用研究提供了观测基础.  相似文献   

10.
ABSTRACT

The potential of different models – deep echo state network (DeepESN), extreme learning machine (ELM), extra tree (ET), and regression tree (RT) – in estimating dew point temperature by using meteorological variables is investigated. The variables consist of daily records of average air temperature, atmospheric pressure, relative humidity, wind speed, solar radiation, and dew point temperature (Tdew) from Seoul and Incheon stations, Republic of Korea. Evaluation of the model performance shows that the models with five and three-input variables yielded better accuracy than the other models in these two stations, respectively. In terms of root-mean-square error, there was significant increase in accuracy when using the DeepESN model compared to the ELM (18%), ET (58%), and RT (64%) models at Seoul station and the ELM (12%), ET (23%), and RT (49%) models at Incheon. The results show that the proposed DeepESN model performed better than the other models in forecasting Tdew values.  相似文献   

11.
Water temperature is a key driver for riverine biota and strongly depends on shading by woody riparian vegetation in summer. While the general effects of shading on daily maximum water temperature Tmax are well understood, knowledge gaps on the role of the spatial configuration still exist. In this study, the effect of riparian buffer length, width, and canopy cover (percentage of buffer area covered by woody vegetation) on Tmax was investigated during summer baseflow using data measured in seven small lowland streams in western Germany (wetted width 0.8–3.7 m). The effect of buffer length on Tmax differed between downstream cooling and heating: Tmax approached cooler equilibrium conditions after a distance of 0.4 km (~45 min travel-time) downstream of a sharp increase in canopy cover. In contrast, Tmax continued to rise downstream of a sharp decrease in canopy cover along the whole 1.6 km stream length investigated. The effect of woody vegetation on Tmax depended on buffer width, with changes in canopy cover in a 10 m wide buffer being a better predictor for changes in Tmax compared to a 30 m buffer. The effect of woody vegetation on Tmax was linearly related to canopy cover but also depended on daily temperature range Trange, which itself was governed by cloudiness, upstream canopy cover, and season. The derived empirical relationship indicated that Tmax was reduced by −4.6°C and increased by +2.7°C downstream of a change from unshaded to fully shaded conditions and vice versa. This maximum effect was predicted for a 10 m wide buffer at sunny days in early summer, in streams with large diel fluctuations (large Trange). Therefore, even narrow woody riparian buffers may substantially reduce the increase in Tmax due to climate change, especially in small shallow headwater streams with low baseflow discharge and large daily temperature fluctuations.  相似文献   

12.
《水文科学杂志》2013,58(4):893-904
Abstract

An explicit neural network formulation (ENNF) is developed for estimating reference evapotranspiration (ET0) using daily meteorological variables obtained from the California Irrigation Management Information System (CIMIS) database. First, the ENNF is trained and tested using the CIMIS database, and then compared with five conventional ET0 models, as well as the multiple linear regression method. Statistics such as average, standard deviation, minimum and maximum values, and criteria such as mean square error and determination coefficient are used to measure the performance of the ENNF. Daily atmospheric data of four climatic stations in central California are taken into consideration in the model development and those of three other stations are used for comparison purposes. The meteorological variables employed in the formulation are solar radiation, air temperature, relative humidity and wind speed. It is concluded from the results that ENNF offers an alternative ET0 formulation, but that the gain in skill is marginal compared with simpler linear techniques. However, this finding needs to be tested using sites drawn from a wider range of climate regimes.  相似文献   

13.
The objective of this work is to better understand and summarize the mountain meteorological observations collected during the Science of Nowcasting Winter Weather for the Vancouver 2010 Olympics and Paralympics (SNOW-V10) project that was supported by the Fog Remote Sensing and Modeling (FRAM) project. The Roundhouse (RND) meteorological station was located 1,856 m above sea level that is subject to the winter extreme weather conditions. Below this site, there were three additional observation sites at 1,640, 1,320, and 774 m. These four stations provided some or all the following measurements at 1 min resolution: precipitation rate (PR) and amount, cloud/fog microphysics, 3D wind speed (horizontal wind speed, U h; vertical air velocity, w a), visibility (Vis), infrared (IR) and shortwave (SW) radiative fluxes, temperature (T) and relative humidity with respect to water (RHw), and aerosol observations. In this work, comparisons are made to assess the uncertainties and variability for the measurements of Vis, RHw, T, PR, and wind for various winter weather conditions. The ground-based cloud imaging probe (GCIP) measurements of snow particles using a profiling microwave radiometer (PMWR) data have also been shown to assess the icing conditions. Overall, the conclusions suggest that uncertainties in the measurements of Vis, PR, T, and RH can be as large as 50, >60, 50, and >20 %, respectively, and these numbers may increase depending on U h, T, Vis, and PR magnitude. Variability of observations along the Whistler Mountain slope (~500 m) suggested that to verify the models, model space resolution should be better than 100 m and time scales better than 1 min. It is also concluded that differences between observed and model based parameters are strongly related to a model’s capability of accurate prediction of liquid water content (LWC), PR, and RHw over complex topography.  相似文献   

14.
《水文科学杂志》2012,57(15):1824-1842
ABSTRACT

In this research, five hybrid novel machine learning approaches, artificial neural network (ANN)-embedded grey wolf optimizer (ANN-GWO), multi-verse optimizer (ANN-MVO), particle swarm optimizer (ANN-PSO), whale optimization algorithm (ANN-WOA) and ant lion optimizer (ANN-ALO), were applied for modelling monthly reference evapotranspiration (ETo) at Ranichauri (India) and Dar El Beida (Algeria) stations. The estimates yielded by hybrid machine learning models were compared against three models, Valiantzas-1, 2 and 3 based on root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (PCC) and Willmott index (WI). The results of comparison show that the ANN-GWO-1 model with five input variables (Tmin, Tmax, RH, Us, Rs) provides better estimates at both study stations (RMSE = 0.0592/0.0808, NSE = 0.9972/0.9956, PCC = 0.9986/0.9978, and WI = 0.9993/0.9989). Also, the adopted modelling strategy can build a truthful expert intelligent system for estimating the monthly ETo at study stations.  相似文献   

15.
Five downscaling techniques, namely the statistical downscaling model, the automated statistical downscaling method, the change factor (CF) method, the advanced CF method, the Weather generator (LarsWG5) method, are applied to the upstream basin of the Huaihe River. Changes in regional climate scenarios and hydrology variables are compared in future periods to investigate the uncertainty associated with the downscaling techniques. Paired-sample T test is applied to evaluation the significant of the difference of the means between the observed data and the downscaled data in the future. The Xinanjiang rainfall–runoff model is employed to simulate the rainfall–runoff relation. The results demonstrate that the downscaling techniques utilized herein predict an increased tendency in the future. The increases range of maximum temperature (Tmax) is between 3.7 and 4.7 °C until the time period of 2070–2099 (2080s). While, the increases range of minimum temperature (Tmin) is between 2.8 and 4.9 °C until 2080s. The research presented herein determined that there is an increase predicted for the peaks over threshold (discussed in the paper) and a decrease predicted for the peaks below the threshold (discussed in the paper) in the future, which illustrates that the temperature would rise gradually in the future. Precipitation changes are not as obvious as temperatures changes and tend to be influence by the season. Most downscaling techniques predict increases, and others indict decreases. The annual mean precipitation range changes between 3.2 and 53.3 %, and moreover, these changes vary from season to season.  相似文献   

16.
Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas‐phase total PAH (∑14PAH) concentrations were 23.5 ng m?3 for suburban and 109.7 ng m?3 for urban sites while average particle‐phase total PAH concentrations were 12.3 and 34.5 ng m?3 for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas‐phase and ∑14PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle‐phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno[1,2,3‐cd]PY/(indeno[1,2,3‐cd]PY + benzo[g,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas–particle partition coefficients (KP) were compared to the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The correlations between experimental and modeled KP values were significant (r2 = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol‐based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured KP and soot‐based model predictions.  相似文献   

17.
城市化引起的气温上升是土地覆盖变化影响区域气候的重要体现.本文采用"观测资料减去再分析"(Observation Minus Reanalysis,OMR)的方法估计四川盆地和周边地区下垫面城市化改变对夏季地面2 m气温变化趋势的影响.设计了不同城市化下垫面扩展变化的WRF模拟试验,对1998-2012年四川盆地及周边...  相似文献   

18.
城镇化背景下极端降水事件频发,洪涝灾害问题日益突出,探讨城镇化对极端降水的影响已成为热点与难点问题.本文以长江下游太湖平原地区为例,基于区内40个雨量站长序列的逐日资料(1976-2015年),结合城镇化下土地利用/覆被和社会经济等数据,对比分析了不同城镇化阶段极端降水相关指标的时空变化规律,并定量评估不同城镇化水平对...  相似文献   

19.
The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength Bmax, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters Bmean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.  相似文献   

20.
The study of thermal expansion by a dilatometer technique on a few granitic rocks from the Peninsular shield and Himalayan regions of India confirms that the linear coefficient of thermal expansion (α) is a function of heating rate, crack porosity, thermal cycling, mineral composition and grain orientation. Permanent set in the samples occurs at the limiting temperature (Tp) and restricts the validity of the apparent thermal-expansion coefficient with rise in temperature. Values of α are determined for a heating rate of ?2°C min?1 in order to calculate the volume coefficient of expansion (αv) and the temperature dependence of density (ρT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号