首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
利用典型钻孔P5孔沉积物的岩性、测年、孢粉和有孔虫的分析结果,探讨了末次冰消期以来长江三角洲东南部古河谷区记录的气候波动和海平面阶段性上升过程及其控制下的古河谷沉积模式。研究发现本区古河谷末次冰消期(15~10 ka BP)以淡水湖沼相沉积为主,4 m厚的泥炭可能是新仙女木事件的反映。10~9 ka BP 发育滨海相粉细砂、粉砂沉积,反映此时海平面较为稳定。9~8 ka BP发育溺谷相泥质粉砂、粉砂质泥沉积,厚达11 m,反映海平面快速上升作用下的高速率充填。至全新世大暖期,古河谷区沉积顶界已和长江三角洲平原的第一硬土层埋深大致相同,反映古河谷已基本被填平。  相似文献   

2.
One of the early problems with the Storegga tsunami deposit was how to distinguish it from deposits of the midHolocene (Tapes) transgression. An excavation on Harøy, an island on the outermost western coast of Norway, shows a distinct, clean sand bed embedded in peat and clearly separated from the overlying Tapes beach deposits. This sand bed continues in the peat landwards of the beach ridge for at least 60 m. Radiocarbon dates of the peat show that the sand was deposited some time between 6900 and 7700 yr BP. The sedimentary structures of the bed, the 14C dates, and the fact that this is the only sand bed in the peat, suggest that the sand bed was deposited by a short-lived event, the Storegga tsunami. On the neighbouring island, Fjørtoft, a Stone Age settlement, dated to 7500 yr BP, was discovered in the early 1970s. The settlement was found underneath a sand bed that later had been covered by the Tapes beach ridge deposits. When discovered, the sand covering the settlement was inferred as eolian sand. However, this investigation shows that the Storegga tsunami deposited a widespread sand bed on the land surface around this time with a similar grain size distribution to eolian sand. It is therefore suggested that the sand bed covering this settlement was deposited from the Storegga tsunami. Both the stratigraphy and 14C dates demonstrate that the Tapes transgression maximum was reached well after the Storegga tsunami on Harøy, between 6500 and 6100 yr BP.  相似文献   

3.
Clastic, depositional strandplain systems have the potential to record changes in the primary drivers of coastal evolution: climate, sea‐level, and the frequency of major meteorological and oceanographic events. This study seeks to use one such record from a southern Brazilian strandplain to highlight the potentially‐complex nature of coastal sedimentological response to small changes in these drivers. Following a 2 to 4 m highstand at ca 5·8 ka in southern Brazil, falling sea‐level reworked shelf sediment onshore, forcing coastal progradation, smoothing the irregular coastline and forming the 5 km wide Pinheira Strandplain, composed of ca 500 successive beach and dune ridges. Sediment cores, grab samples and >11 km of ground‐penetrating radar profiles reveal that the strandplain sequence is composed of well‐sorted, fine to very‐fine quartz sand. Since the mid‐Holocene highstand, the shoreline prograded at a rate of ca 1 to 2 m yr?1 through the deposition of a 4 to 6 m thick shoreface unit; a 1 to 3 m thick foreshore unit containing ubiquitous ridge and runnel facies; and an uppermost beach and foredune unit. However, the discovery of a linear, 100 m wide barrier ridge with associated washover units, a 3 to 4 m deep lagoon and 250 m wide tidal inlet within the strandplain sequence reveals a period of shoreline transgression at 3·3 to 2·8 ka during the otherwise regressive developmental history of the plain. The protected nature of Pinheira largely buffered it from changes in precipitation patterns, wave energy and fluvial sediment supply during the time of its formation. However, multiple lines of evidence indicate that a change in the rate of relative sea‐level fall, probably due to either steric or ice‐volume effects, may have affected this coastline. Thus, whereas these other potential drivers cannot be fully discounted, this study provides insights into the complexity of decadal‐scale to millennial‐scale coastal response to likely variability in sea‐level change rates.  相似文献   

4.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

5.
在对西天山赛里木湖盆地进行第四纪地质调查与5万填图基础上,发现沿该湖泊的不同湖岸阶地上都不同程度地发育了可指示湖面变化的湖滩岩。水准测量结果表明,典型的湖滩岩最常见于高出现今湖面7.1~9.4 m和33.4~39.4 m的低、高两级湖积台地上。对湖滩岩样品进行岩石学和矿物学研究进一步揭示,湖滩岩主要由内碎屑、藻团块、陆源碎屑、胶结物和填隙物等构成,胶结物主要为亮晶方解石,夹少量文石,表明赛里木湖周边的湖滩岩为典型的方解石胶结砂屑砾屑岩。湖滩岩样品的U系年代测试结果表明,低、高两级台地上的湖滩岩主要形成于距今24.8±1.5 ka至27.6±1.5 ka和55.4±3.8 ka的晚更新世晚期,大致对应末次冰期间冰阶MIS3阶段早期和末期的相对暖湿气候阶段。湖滩岩及其测年结果指示,赛里木湖最近一期最高湖面出现在距今55.4 ka左右末次间冰阶早期,其后由于气候的干旱化,湖面整体处于逐步下降过程,在相对暖湿期间经历了多次湖面相对稳定期并形成湖滩岩。  相似文献   

6.
Sea‐level rise has been related to global warming. The modern system on the northern coast of Anholt, Denmark, may well be analogous to other beach ridge systems formed in microtidal regimes and our results should have impact on estimation of past sea‐level variation. Ground‐penetrating radar data collected across the modern (<30 years old) berm, beach ridge and swale deposits resolve downlapping reflections interpreted to mark sea level at the time of deposition. Existing time series of sea‐level data constrain actual sea‐level variation. Nineteen readings of sea‐level markers made along our profile fluctuate within ?0.42 and 0.57 m above present mean sea level, consistent with 95% of the sea‐level data. These fluctuations reflect tidal effects and meteorological conditions. Main data uncertainties are well‐known and the sea‐level markers may be identified with a high degree of confidence.  相似文献   

7.
The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700 years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250 MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ~ 10 m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1 m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5 m was reached 6500 years ago; 700 years later the relative sea level had dropped 0.7 m indicating a change in the relative sea level around 1 mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.  相似文献   

8.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

9.
闽南、粤东全新世海平面变化   总被引:8,自引:0,他引:8       下载免费PDF全文
本文对7类古海面标志物的137个样品年龄数据进行沉积深度校正、构造升降幅度校正和潮差校正后,绘出闽南、粤东全新世以来海平面变化曲线。闽南、粤东出现全新世第一次高海面时间为6300aB.P.前后。闽南、粤东全新世海平面变化曲线反映海水进退的波动情况基本相似。海平面发生波动的时间从东往西逐渐推迟。海平面变化曲线与硅藻垂向变化、孢粉所反映的气候变化、滨岸沙堤形成期和古文化遗址堆积的变化有较好的一致性。  相似文献   

10.
Flakket on the island of Anholt in Denmark is a cuspate foreland facing the microtidal Kattegat sea. It is composed of a number of beach ridges typically covered by dune sand and separated by swales and wetlands. OSL dating indicates that the evolution of Flakket began c. AD 1000. Foreland growth was punctuated by a major episode of coastal reorganization leading to coastal retreat c. AD 1800. Coastal retreat led to the formation of an erosion surface that separates older and higher‐lying beach‐ridge and swale deposits from younger and lower‐lying deposits. The palaeo‐sea level is deduced from the architecture of the deposits, and interpretation of ground‐penetrating radar data and geomophological observations indicates that relative sea level was about 1.90±0.25 m above present sea level c. AD 1000, but about 0.00±0.25 m relative to present sea level c. AD 1830 and c. AD 1870. Anholt is situated at the margin of the uplifted Fennoscandian area; assuming uplift to be about 1.2 mm a?1 it follows that absolute sea level was about +0.70±0.25 m at AD 1000, but around ?0.22±0.25 m at AD 1830 and around ?0.17±0.25 m at AD 1870. Within the uncertainties of the age control, the sea‐level indicators mapped by ground‐penetrating radar reflections and the variability of estimates of uplift found in the literature, the result obtained for AD 1000 is consistent with findings from the Stockholm area in Sweden and with a recently published global sea‐level curve.  相似文献   

11.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

12.
Sanguinet lake is separated from the Atlantic Ocean by a wide Holocene coastal dunes system in SW France. The present day lake level is 21 m above mean sea level (msl). It formed when aeolian sand closed the mouth of the small La Gourgue river which gradually became a lagoon and then a lake. Dated sub‐lacustrine archaeological remains (human settlements, canoes, and wooden architectural structures), as well as paleoenvironmental evidence (drowned tree stumps and lagoonal deposits exposed on the beach) are used to interpret the formation and chronology of lake level rise during the past 4000 years. Around 2000–1650 B.C., the river flowed into a lagoon or an estuary which connected with the ocean west of the present Sanguinet Lake. Its level was affected by the tide, which ranged between 2 m below and 3 m above msl. The accumulation of aeolian sand before 1500–1000 B.C. began to close the connection with the sea. At this time, the elevation of the surface of the lake water was approximately 5 m above msl, but it still remained connected to the ocean. Around 1000 B.C., the lake level rose quickly by 1 to 2 m during a period of renewed mobility of the coastal aeolian sand, and continued to rise slowly until about 100 A.D. when there was a gradual closure of the lake outlet. This rise forced people who were living on the lake shore and along the rivers to move to higher land along the valley. The nearby Gallo‐Roman site of Losa was settled at the end of the 1st century B.C.; then the final blocking of the outlet occurred because of spit growth as a result of north‐south littoral drift accompanied by the deposit of aeolian sand. This led to the lake level rising rapidly. Consequently, Losa was abandoned in the 3rd century A.D. and ruins of its temple (at 17 m above msl) were submerged in the 6th century. Further oscillations of the lake level probably correspond to water table fluctuations before it became stable at around 1000 A.D. The highest lake level (23.35 m) was reached during the 18th century as a consequence of modern dune formation, and thus was artificially reduced to 21 m in 1840 by construction of an overflow channel. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
The Kregnes “moraine” ridge in Gauldalen, a north-trending valley south of Trondheim, is a Gilbert-type delta formed at a Younger Dryas glacier terminus. The gravelly delta consists of a north-dipping foreset, 150 m thick, comprised of turbidites, debrisflow beds and debrisfall deposits. The bottomset consists of turbiditic sand and mud layers. The topset, 2-3 m thick, is a braided-river alluvium with local beach deposits, matching the marine limit of 175 m a.s.l. The fjord-wide delta front had an extent of 3 km and prograded over a distance of 1.5 km, in probably less than 100 years, with the delta toe climbing by 50 m against the basin's rapidly aggrading muddy floor. The delta advanced through the alternating episodes of its toe aggradation and progradation, related to the increases and decreases of the delta-slope gradient. Slope steepening led to intense sediment sloughing by chutes and occasional large-scale failures. The fjord's wave fetch was low and the wave base no deeper than 1.5-2 m, but strong storm waves occasionally reworked the delta front to a depth of 6 m. Glacitectonic deformation was limited to the system's upfjord end. Allostratigraphic analysis suggests that the proglacial system commenced its development as an ice-contact submarine fan that was deformed, quickly aggraded to the sea surface and turned into an ice-contact delta, which further evolved into the large glaciofluvial delta. The Kregnes ridge represents an episode of the ice-front re-advance due to climatic deterioration and is tentatively correlated with the Hoklingen substage.  相似文献   

14.
利用对深圳西冲湾两个岬角之间的海蚀地貌及其海滩沉积物的野外调查资料,鉴定出三级海蚀平台,对其分别进行了高程换算,并借助于海蚀拱门和海蚀刻槽的测定,以及对典型沙层沉积剖面序列的分析和14C测年,认为:虽然西冲湾海蚀平台的岩石类型是不易被侵蚀的花岗岩,但是此处的海蚀地貌(主要是海蚀平台)以及海滩沉积物(主要是海滩岩)可以作为全新世存在高海平面的证据。此外,针对我国海岸带人口密度大,人类活动对海岸影响程度大的现况,提出了未来研究南海北部海岸新构造运动存在的问题以及其解决方案。研究成果对于认识南海北部海岸全新世的构造运动、海平面变化以及与其他地区新构造运动的对比研究都具有重要的意义。  相似文献   

15.
Coastal cliffs and stream cut sections at Langelandselv on Jameson Land show a 22 m thick sedimentary succession reflecting the development of shallow marine and fluvial environments during the last interglaciation. The shallow marine sediments were deposited in upper shoreface, back-barrier, and delta environments during a rise in the relative sea level from 0 to 18 m. The interglacial succession ends with glaciotectonically dislocated fluvial sand, and is capped by alternating beds of lodgement till and fluvial sand, deposited during the Early Weichselian. The age is determined by palacoceanographic correlation of molluse and foraminifer faunas with isotopic substage 5e in the deep sea record, supported by luminescencs and U/Th dates and amino acid analysis.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2544-2557
Ten beach deposits, mainly beachrock, on the Carmel coastal plain, northern Israel, are discussed. Six are reported for the first time. The deposits are situated within or close to the following seasonal stream (locally termed Nahal) channels: Nahal Ahuza, Amiram, Ovadia, Galim, Megadim, Bir Ibdawiya, Me’arot and Kebara. The morphology and lithology of most of the deposits are similar: their uppermost altitude varies from 0 to 9 m above the present sea level. Most of the deposits are composed mainly of fine quartz sand and marine mollusk shells carbonate cemented. The dominant mollusk families are Glycymerididae, Cardiidae and Donacidae. Most of the beach deposits are situated between cemented aeolian sandstones (locally termed kurkar) layers on the Carmel coast ridge. In the Nahal Ahuza deposit, a marine gastropod Lentigo latus, an index fossil for the MIS 5e high sea stand in the Mediterranean area was discovered.According to lithology and chronostratigraphy, the presence of Lentigo latus, Th/U, AAR and RTL dating and flint artifacts, the beach deposits were related to the Last Interglacial maximum about 125 ka BP, i.e. the MIS 5e high sea stand. These beach deposits are used to identify the palaeo sea levels and coastlines and to study the tectonics along the Carmel coastal plain. By comparing the elevations and characteristics of the beach deposits to known MIS 5e deposits elsewhere, and by analyzing archaeological data, it is concluded that during the last 125 ka, the maximum possible vertical displacement was less than 48 mm/ka, and the Carmel coastal plain was relatively tectonically stable.  相似文献   

17.
EPPO OOMKENS 《Sedimentology》1974,21(2):195-222
A study of cores from thirty-three coreholes drilled in various parts of the Niger delta has shown tidal channel sand to be the dominant lithofacies type in the uppermost 30 m of the deltaic complex. Below 30 m fluviatile sand becomes predominant. Coastal barrier sand is present in the uppermost 5 m of the present coastal belt, but chances for preservation of this lithofacies appear to be small. The Post-Glacial deltaic sediments can be divided into three units.
  • 1 Alluvial valley-fill sands and conglomerates deposited during the strong Post-Glacial sea level rise.
  • 2 An onlapping complex of lower coastal plain deposits which contains a lower member of fine grained lagoonal and mangrove swamp deposits and an upper member of tidal channel and coastal barrier sands. This complex is thought to have been deposited during the strong Post-Glacial rise in sea level and is locally as much as 25 m thick.
  • 3 An offlapping complex of fluviomarine and coastal deposits which contains a lower member of marine clay and silt and an upper member of tidal channel and coastal barrier sand. The presence of this late Holocene complex indicates that deltaic progradation was resumed as soon as the rapid rise in sea level slowed down. The offlapping complex is locally as much as 35 m thick.
  相似文献   

18.
New and old, pollen and other studies are summarized for seven sites in the Thames estuary, all of them most probably of last (Ipswichian) interglacial age. Early in the interglacial, at Crayford, Little Thurrock, and Purfleet, there was an aggradation of laminated (3 mm/pair) 'brickearth' (clay, with silt and sand), to above +11 m O.D. Observations in modern estuaries suggest that the laminations were of tidal origin, and related to a sea stand at +7 m, represented on the coast by e.g. the raised cliff at Brighton. In the middle of the Ipswichian, freshwater fossils at West Thurrock and Wretton (Norfolk) suggest that the sea fell below 0 m. Late in the Ipswichian, arguably at the break of climate, at Crayford, Ilford, Aveley, West Thurrock, Stutton (Suffolk) and probably Little Thurrock, there was an aggradation of massive brickearth (famous for its mammal remains) grading up into sand, to above + 14 m. The possibility is discussed that this second aggradation reflects a second rise of sea level, to +16 m, represented by e.g. the raised beach at Portland, and caused by an Antarctic 'surge'. According to A. T. Wilson, this surge triggered the last (Devensian) ice age.  相似文献   

19.
Beach-rock exposures provide a record of Holocene sea-level rise along the 560-km-long northeast-facing coast of Ceará, Brazil, that differs from the record available along the other 4300 km of Brazilian coastline further south. Whereas documentation is available from southern Brazil to show Holocene sea levels as much as 5 m above today's level, our observations along the northeastern coast indicate that sea level here was not above the present-day level during the Holocene. Near Jericoacoara, about 240 km northwest of Fortaleza, characterized by strong surf, Precambrian rocks crop out from under a temporary cover of sand in small protected locations with less surf. Here in this upper tidal zone beach rock is being formed, while it is being dismembered synchronously by erosion at lower tide levels. This shows a rising sea level. Along the entire coast of Ceará west of Ponta Grossa the absence of beach rock higher than spring tide level indicates that sea-level was not above its present-day level during the Holocene.Notches in bedrock situated between 2 m and 6 m above spring-tide high-water level that we formerly described as Holocene, are now believed to be Sangamonian.  相似文献   

20.
Archaeological sites in the northern Ha'apai Group of central Tonga occur on small islands within the uplifted forearc belt of the Tonga-Kermadec arc-trench system. The present inland positions of occupation sites that probably once occupied coastal settings imply significant expansion of some island shorelines during late Holocene time (ca. 3250 B.P. to present). Geologic processes leading potentially to enlargement of the islands include continuing forearc uplift, eustatic or glacio-hydro-isostatic fall in sea level following a mid-Holocene highstand, and progressive accretion of beach ridges to island coasts, with or without changes in relative sea level. Radiometric dates for uplifted coral terraces in Tonga indicate that forearc uplift has been negligible during Holocene time. By contrast, theoretical considerations, regional analysis of shoreline indicators throughout the South Pacific, and limited empirical data from Tonga itself all imply that regional sea level has declined locally by 1–2 m since a mid-Holocene highstand (ca. 6000-3000 B.P.), which was a hydro-isostatic response to transfer of water mass from Pleistocene ice caps to the ocean basins. Emergence of originally coastal sites is thus expected since initial settlement of the islands by Lapita peoples. Accretionary coastal flats composed of multiple beach ridges are 250–500 m wide on favorable leeward shores and the flanks of sand cays, but some presently unknown proportion of this incremental island growth may have occurred prior to the post-mid-Holocene decline in relative sea level. Ash falls from tephra eruptions at Tongan volcanoes also modified island environments through Quaternary time. Evidence for significant change in the configuration and morphology of islands in Ha'apai during the period of human settlement highlights the need for systematic interdisciplinary archaeological and geological research in the study of Pacific prehistory. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号