首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The technique of single zircon dating from the thermal evaporation of 207Pb/206Pb (Kober 1986, 1987) provides a means of dating successive periods of growth and nucleation of zircons in polymetamorphic assemblages. In contrast Nd model ages may provide a measure of the period of crustal residency for the sample or its protolith. These two techniques have been combined to elucidate the tectonic history of the Proterozoic mobile belt of southern India, exposed south of the Palghat-Cauvery Shear Zone that marks the southern boundary of the Archaean craton of Karnataka. The two main tectonic units of this mobile belt comprise the Madurai and Trivandrum Blocks, both of which are characterised by massive charnockite uplands and low-lying polymetamorphic metasedimentary belts that have undergone a complex tectonic history throughout the Proterozoic. Evidence for early Palaeoproterozoic magmatism is restricted to the Madurai Block where single zircon evaporation ages from a metagranite (2436 ± 4 Ma) are similar to model Nd ages from a range of lithologies suggesting crustal growth at that time. The Trivandrum Block, to the south of the Achankovil shear zone, is comprised of the Kerala Khondalite Belt, the Nagercoil charnockites and the Achankovil metasediments. Single zircon evaporation ages, together with conventional zircon and garnet chronometry, suggest that all three units underwent upper-amphibolite facies metamorphism at ∼1800 Ma, an event unrecorded in the metagranite from the Madurai Block. This implies that the Madurai and Trivandrum blocks represent distinct terrains throughout the Palaeoproterozoic. Model Nd ages from the Achankovil metasediments are much younger (1500–1200 Ma) than those from the adjacent Kerala Khondalite Belt and Madurai Blocks (3000–2100 Ma), but there is no evidence for zircon growth in these metasediments during the Mesoproterozoic. Hence the comparatively young model Nd ages of the metasediments are indicative of a mixed provenance rather than a discrete period of crustal growth. Zircon overgrowths from the Madurai Block (547 ± 17 Ma) and Achankovil metasediments (530 ± 21 Ma) suggest that all tectonic units of the Proterozoic mobile belt of South India shared the same metamorphic history from the early Palaeozoic. This event has been recognised in the basement lithologies of Sri Lanka and East Antarctica, confirming that the constituent terrains of East Gondwana had assembled by this time. Received: 10 October 1995 / Accepted: 27 October 1997  相似文献   

2.
The Madurai Block (MB) is the largest Precambrian crustal block in the Southern Granulite Terrane (SGT) of India and hosts rare cordierite- and orthopyroxene-bearing granulites. Investigations based on field study, petrology, metamorphic PT estimation, and detrital zircon geochronology of these granulites are crucial for understanding the ultrahigh-temperature (UHT) metamorphism and crustal evolution in this block. Here we investigate the petrology and zircon U–Pb geochronology of two new localities of cordierite granulites at Kottayam (southern MB; SMB) and Munnar (central MB; CMB). Petrographic observations and phase equilibria modelling results indicate that these rocks experienced UHT metamorphism with the peak temperature exceeding 950℃ and involving clockwise P–T paths. The prograde mineral assemblages define the PT conditions of 6.8–8.7 kbar and 750–875℃. The peak conditions are estimated using pseudosection modelling and geothermometry, which yield PT estimates of 7.1–9.1 kbar and 955–985℃. The retrograde cooling and decompression are inferred at 860–790℃ and <6.5 kbar, respectively. Partial melting played an important role during metamorphism and contributed to the overgrowth around detrital zircons. The melt production process was probably related to biotite dehydration melting, and was mainly triggered by heating, with or without the effect of decompression. Detrital zircons in cordierite granulite samples from the two localities show similar age distributions and have dominantly Neoproterozoic ages (1024–760 Ma). The zircon cores show oscillatory zoning with a wide range of Th/U ratios (0.01–0.96), implying complex protoliths from multiple Neoproterozoic provenances from both southern and central domains of the MBs. Zircon rims and homogeneous bright zircons yield mean ages of 549 ± 5 Ma, 536 ± 6 Ma, and 544 ± 6 Ma, which are interpreted to represent zircon overgrowths during the post-peak cooling and decompression process. The timing of peak UHT metamorphism is constrained as 549–599 Ma, which coincides with the assembly of the Gondwana supercontinent.  相似文献   

3.
In a comprehensive U–Pb electron microprobe study of zircon and monazite from the khondalite belt of Trivandrum Block in southern Kerala, we present age data on five key metapelite locations (Nedumpara, Oottukuzhi, Kulappara, Poolanthara and Paranthal). The rocks here, characterized by the assemblage of garnet–sillimanite–spinel–cordierite–biotite–K–feldsapr–plagiocalse–quartz–graphite, have been subjected to granulite facies metamorphism under extreme thermal conditions as indicated by the stability of spinel + quartz and the presence of mesoperthites that equilibrated at ultrahigh-temperature (ca. 1000 °C) conditions. The oldest spot age of 3534 Ma comes from the core of a detrital zircon at Nedumpara and is by far the oldest age reported from this supracrustal belt. Regression of age data from several spot analyses in single zircons shows “isochrons” ranging from 3193 ± 72 to 2148 ± 94 Ma, indicating heterogeneous population of zircons derived from multiple provenance. However, majority of zircons from the various localities shows Neoproterozoic apparent ages with sharply defined peaks in individual localities, ranging between 644–746 Ma. The youngest zircon age of 483 Ma was obtained from the outermost rim of a grain that incorporates a relict core displaying ages in the range of 2061–2543 Ma.The cores of monazites also show apparent older ages of Palaeo-Mesoproterozoic range, which are mantled by late Neoproterozoic/Cambrian rims. The oldest monazite core has an apparent age of 2057 Ma. Extensive growth of new monazite during latest Neoproterozoic to Cambrian–Ordovician times is also displayed by grain cores with apparent ages up to 622 Ma. The homogeneous core of a sub-rounded monazite grain yielded a maximum age of 569 Ma, markedly younger than the 610 Ma age reported in a previous study from homogenous and rounded zircon core from a metapelite in Trivandrum Block. These younger ages from abraded grains that have undergone fluvial transport are interpreted to indicate that deposition within the khondalite belt was as young as, or later than, this range. Probability density plots indicate that majority of the monazite grain population belong to Late Proterozoic/Cambrian age (ca. 560–520 Ma) with major peaks defining sharp spikes in individual localities.The age data presented in this study indicate that the metasediments of the Trivandrum Block sourced from Archaean and Paleo-Mesoproterozoic crustal fragments that were probably assembled in older supercontinents like Ur and Columbia. The largest age population of zircons belong to the Neoproterozoic, and are obviously related to orogenies during the pre-assembly phase of Gondwana, possibly from terrains belonging to the East African Orogen. Several prominent age spikes within the broad late Neoproterozoic–Cambrian age range displayed by monazites denote the dynamic conditions and extreme thermal perturbations attending the birth of Gondwana. Our study further establishes the coherent link between India and Madagascar within the East Gondwana ensemble prior to the final assembly of the Gondwana supercontinent.  相似文献   

4.
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite–charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg–Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870°C and 8 kbar. The zircon U–Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 ± 73, 831 ± 31, and 772 ± 49 Ma, respectively. Negative zircon εHf (t) (?5 to ?20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg–Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500 Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite + quartz + aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg–Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550 Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.  相似文献   

5.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   

6.
《International Geology Review》2012,54(16):2044-2064
The Neoproterozoic succession in the Aksu region of northwestern China forms an unconformable boundary with the lower Precambrian Aksu basement group and consists of the Qiaoenbrak, Yuermeinak, Sugetbrak, and Chigebrak Formations. The two lowermost units include distinct glaciogenic diamictites that indicate distinct episodes of glaciation. In this study, we report the LA-ICP-MS U–Pb ages of detrital zircons and geochemical data from the lower Neoproterozoic strata. The age of the detrital zircon constrains the maximum depositional age to between 769 ± 10 and 727 ± 8 Ma for the Qiaoenbrak diamictites, which are associated with the Kaigas glaciation that occurred during the early Cryogenian period. The youngest detrital zircon age of 719 ± 9 Ma corresponds to the maximum depositional age of the Yuermeinak diamictites, which are associated with the Sturtian glaciation. The detrital zircons from the lower Neoproterozoic strata in the Aksu area indicated four peak ages of 2484, 1948, 861, and 647–581 Ma, which are consistent with the major tectonic episodes in the Tarim Block. The peak age of 2484 Ma represents an Archaean basement, which participated in the worldwide continental nuclei growth event from the late Neoarchaean to the early Palaeoproterozoic. The peak age of 1948 Ma may be associated with the assembly of the Columbia supercontinent, and the 861 and 647–581 Ma are likely associated with the break-up of the Rodinia supercontinent. The combination of geological and geochemical characteristics between the Qiaoenbrak Formation and Aksu Group indicates that the Qiaoenbrak Formation may be penecontemporaneous with the Aksu Group in an active continental margin tectonic setting. Following the break-up of the Rodinia supercontinent, the margin of the Aksu evolved into a passive margin and the Yuermeinak and Sugetbrak Formations were deposited.  相似文献   

7.
The Lützow-Holm Complex (LHC) of East Antarctica has been regarded as a collage of Neoarchean (ca. 2.5 Ga), Paleoproterozoic (ca. 1.8 Ga), and Neoproterozoic (ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups: (1) late Meso- to Neoproterozoic (1.1–0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Sôya Coast areas, and (2) dominantly Neoarchean to Paleoproterozoic (2.8–2.4 Ga) zircons from the southwestern part of the LHC in southern Lützow-Holm Bay area. The ca. 1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic (1.3–1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments (e.g., Rayner Complex, Eastern Ghats Belt). Meso- to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso- to Neoproterozoic zircons. Paleo- to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ∼2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic (ca. 2.5 Ga) and Neoproterozoic (ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider that the Highland Complex and metasedimentary unit of the LHC formed a unified latest Neoproterozoic suture zone with a large block of northern LH–Vijayan Complex caught up as remnant of the ca. 1.0 Ga magmatic arc.  相似文献   

8.
The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean Northern Madurai block,Paleoproterozoic Central Madurai block and the dominantly Neoproterozoic Southern Madurai Block.The margins of these blocks are well-known for the occurrence of ultrahigh-temperature(UHT)granulite facies rocks mostly represented by Mg-Al metasediments.Here we report a dismembered layered mafic–ultramafic intrusion occurring in association with Mg-Al granulites from the classic locality of Ganguvarpatti in the Central Madurai Block.The major rock types of the layered intrusion include spinel orthopyroxenite,garnet-bearing gabbro,gabbro and gabbroic anorthosite showing rhythmic stratification and cumulate texture.The orthopyroxene-cordierite granulite from the associated Mg-Al layer is composed of spinel,cordierite and orthopyroxene.The pyroxene in both rock units is high-Al orthopyroxene formed under UHT metamorphic conditions.Conventional thermobarometry yields near-peak metamorphic conditions of 9.5–10 kbar pressure and a minimum temperature of 980℃.We computed P–T pseudosections and contoured for the compositional as well as modal isopleths of the major mineral phases,which yield temperature above 1000℃.FMAS petrogenetic grid,Al-in-orthopyroxene isopleth,conventional thermobarometry and calculated pseudosection reveal a clockwise pressure–temperature(P–T)path and near isothermal decompression.The U–Pb data on zircon grains from the layered magmatic suite indicate emplacement of the protolith at ca.2.0 Ga and the metamorphic overgrowths yield weighted 206Pb/238U mean ages ca.520 Ma.Monazite from the garnet-bearing gabbro and Opx-Crd granulite yielded 206Pb/238U weighted mean ages of ca.532 Ma and 523 Ma marking the timing of metamorphism.We correlate the layered intrusion to a Paleoproterozoic suprasubduction zone setting,defining the Ganguvarpatti area as part of a collisional suture assembling the Northern and Central Madurai Blocks.The Paleoproterozoic magmatism and late Neoproterozoic-Cambrian UHT metamorphism can be linked to the tectonics of the Columbia and Gondwana supercontinents.  相似文献   

9.
Neoproterozoic sedimentary sequences in the South China Block provide great opportunity to examine the tectonic evolution and crustal accretion during this period. This study presents U–Pb ages and Hf isotope composition of detrital zircons and Nd isotope composition of whole rocks of the Neoproterozoic sequences from the Yangtze Block, part of the South China Block. Age patterns of detrital zircons imply that the source area experienced three major periods of magmatic activity at 2,300–2,560, 1,900–2,100 and 770–1,000?Ma and two major episodes of juvenile crust accretion at 2,600–3,400 and 770–1,000?Ma. The maximum age of the Gucheng glaciation can be restricted at?~768?Ma from the youngest detrital zircon ages, probably corresponding to the Kaigas glaciation rather than to the Sturtian glaciation. High La/Sc ratio and low Cr/Th, Sc/Th and Co/Th ratios of the sedimentary rocks point to a derivation from dominantly felsic upper continental crustal sources, whereas large variation of εNd(t) and εHf(t) values indicates that mantle-derived magmatic rocks also provided material to the sedimentary sequences in different degrees. The shift in εNd(t) values of whole rocks and U–Pb age spectra of detrital zircons records the evolution from a back-arc to retro-arc foreland to a rift basin. Age distribution of detrital zircons from the Neoproterozoic sequences, compared with those of the major crustal blocks of Rodinia, implies that the position of the Yangtze Block was probably adjacent to northern India rather than between Australia and Laurentia before the breakup of the Rodinia supercontinent.  相似文献   

10.
《International Geology Review》2012,54(15):1856-1883
ABSTRACT

Here we report new LA-ICPMS U–Pb zircon geochronology of ultrahigh temperature (UHT) metasedimentary rocks and associated crystallized melt patches, from the central Highland Complex (HC), Sri Lanka. The detrital zircon 206Pb/238U age spectra range between 2834 ± 12 and 722 ± 14 Ma, evidencing new and younger depositional ages of sedimentary protoliths than those known so far in the HC. The overgrowth domains of zircons in these UHT granulites yield weighted mean 206Pb/238U age clusters from 665.5 ± 5.9 to 534 ± 10 Ma, identified as new metamorphic ages of the metasediments in the HC. The zircon ages of crystallized in situ melt patches associated with UHT granulites yield tight clusters of weighted mean 206Pb/238U ages from 558 ± 1.6 to 534 ± 2.4 Ma. Thus, using our results coupled with recently published geochronological data, we suggest a new geochronological framework for the evolutionary history of the metasedimentary package of the HC. The Neoarchean to Neoproterozoic ages of detrital zircons indicate that the metasedimentary package of the HC has derived from ancient multiple age provenances and deposited during the Neoproterozoic Era. Hence, previously reported upper intercept ages of ca. 2000–1800 Ma from metaigneous rocks should be considered as geochronological evidence for existence of a Palaeoproterozoic igneous basement which possibly served as a platform for the deposition of younger supracrustal rocks, rather than timing of magmatic intrusions into the already deposited ancient sediments, as has been conventionally interpreted. The intense reworking of entire Palaeoproterozoic basement rocks in the Gondwana Supercontinent assembly may have caused sediments of multiple ages and provenances to incorporate within supra-crustal sequences of the HC. Further, our data supports a convincing geochronological correlation between the HC of Sri Lanka and the Trivandrum Block of Southern India, disclosing the Gondwanian linkage between the HC of Sri Lanka and Southern Granulite Terrain of India.  相似文献   

11.
The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) U–Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U–Pb ages that cluster within the Neoproterozoic(773–963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic(767–944 Ma; 59.8%) as well as the Proterozoic(37.8%) and the Archean(2502–2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic(963 Ma) age populations but similar postNeoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic(960 Ma), with magmatism peaking at 830 Ma and rifting starting at ~770 Ma, leading to the subsequent deposition(from bottom to top) of the Shenshan, Kuli, and Shangshi formations.  相似文献   

12.
The Madurai Block in southern India is considered to represent the eroded roots of an arc-accretionary complex that developed during the subduction–collision tectonics associated with the closure of the Mozambique Ocean and final suturing of the crustal fragments within the Gondwana supercontinent in the Late Neoproterozoic–Cambrian. Here we present a magnetotelluric (MT) model covering the main collisional suture (Palghat–Cauvery Suture Zone) in the north into the central part of the Madurai Block in the south comprising data from 11 stations. Together with a synthesis of the available seismic reflection data along a N–S transect further south within the Madurai Block, we evaluate the crustal architecture and its implications on the tectonic development of this region. According to our model, the predominantly south dipping seismic reflectors beneath the Madurai Block define a prominent south-dipping lithological layering with northward vergence resembling a thrust sequence. We interpret these stacked layers as imbricate structures or mega duplexes developed during subduction–accretion tectonics. The layered nature and stacking of contrasting velocity domains as imaged from the seismic profile, and the presence of thick (>20 km) low resistivity layers ‘floating’ within high resistivity domains as seen from MT model, suggest the subduction of a moderately thick oceanic crust. We identify several low resistivity domains beneath the Madurai Block from the MT model which probably represent eclogitised remnants of oceanic lithosphere. Their metamorphosed and exhumed equivalents in association with ultrahigh-temperature metamorphic orogens have been identified from surface geological studies. Both seismic reflections and MT model confirm a southward subduction polarity with a progressive accretion history during the northward migration of the trench prior to the final collisional assembly of the crustal blocks along the Palghat–Cauvery Suture Zone, the trace of the Gondwana suture in southern India.  相似文献   

13.
ABSTRACT

Due to sparse data for deciphering the late Neoproterozoic tectonic history, there is still considerable debate on whether long-lasting superplume-related or long-duration subduction-related dynamics dominated the Tarim Craton. In this contribution, our field investigations detail the late Neoproterozoic siliciclastic successions, and we report the first granitic conglomerates with zircon U–Pb ages of 753.9 ± 3.7 Ma in the SW Tarim Craton. Importantly, detrital zircons from the thick Cryogenian sedimentary basin also contain a major zircon population at ca. 750 Ma. Together with seismic data, this suggests a large ca. 750 Ma magmatic event in the SW Tarim Craton. Geochemically, the granitic clasts exhibit A-type granite features with high SiO2, high alkali but extremely low K, high FeOT/MgO and Ga/Al, and high high-field strength elements (HFSEs) (i.e. Nb, Hf, and Ta) with significant depletion in Rb, K, Sr, P, Eu, and Ti, and significant negative Eu anomalies (Eu* = 0.13–0.36), showing ferroan granite affinities. Including the detrital zircons, the ca. 750 Ma zircons have a large range of negative εHf(t) values (?19.46 to ?1.16). Elemental and zircon Hf isotope data suggest that the granites were derived from Palaeoproterozoic reworked continental crust and are probably related to crustal thinning and extension. By comparison with previous studies, we conclude that Rodinia breakup was diachronous in the outer parts of the supercontinent.  相似文献   

14.
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss) from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar) suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma) and Paleoproterozoic(ca.2200-1700 Ma) zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma) and early Neoproterozoic(ca.900-750 Ma) detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with~680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.  相似文献   

15.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

16.
Whether the North Qinling Terrane (NQT) was accreted to the North China Craton (NCC) in the Proterozoic is still a matter of debate. We report the first detrital zircon study from the Baishugou Formation, which forms the uppermost part of the Mesoproterozoic Guandaokou Group, at the southernmost NCC margin. Detrital zircons from carbonaceous silty phyllite in the lower part of the Baishugou Formation yield U–Pb ages peaking at ca. 2500 Ma, with minor peaks at ca. 2300–2000, 1800, and 1600 Ma, and εHf(t) values ranging from ?10.8 to +9.1. These zircons are considered to have been sourced from the NCC. In contrast, the middle-to-upper part of the formation contains detrital zircons which yield an age group ranging from 1800 to 1000 Ma, with peaks at 1800, 1500, 1300, and 1100 Ma; the zircons with ages of 1500–1300 Ma dominantly have εHf(t) values greater than +5 and the majority plot along the depleted mantle evolution curve. The striking difference between the U–Pb ages of the detrital zircons from the upper and lower parts of the formation suggests a shift in provenance. Magmatism at 1500–1300 Ma has not been reported from the southern margin of the NCC but has been discovered in the NQT. Hence, we deduce that the zircons from the upper part of the formation were primarily derived from the NQT, where an episode of crustal growth and magmatism is recorded between 1500 and 1100 million years. The variable sediment provenances imply that the NCC and NQT could be connected during the late Mesoproterozoic to early Neoproterozoic. The pattern of detrital zircon ages in the new sediments from the Baishugou Formation is distinct from those in the Kuanping Group and the Palaeozoic Erlangping Complex, which are at present sandwiched between the NCC and the NQT. The detrital zircons from these two groups are dominated by an age peak at ca. 1000 Ma, which is formed as the result of amalgamation of the NQT and the Rodinia Supercontinent during the Grenville orogeny. It is possible that the new sediments of the Baishugou Formation were deposited before Grenville orogeny.  相似文献   

17.
Zircon cathodoluminescent imaging and SHRIMP U-Pb dating were carried out for metapelitic rocks (sapphirine-bearing granulites and garnet-cordierite gneisses) from the NW of Madurai, Southern India. The cathodoluminescence images reveal the complex, inhomogeneous internal structure having irregular-shaped core and overgrowths. Zircon grains have obliterated oscillatory zoning. SHRIMP U-Pb chronological results yield ages of 550±15 Ma and 530±50 Ma as a time of metamorphic overprint, and the age of 2509±12 Ma and 2509±30 Ma corresponding to a timing of protolith formation for sapphirine-bearing granulites and garnet-cordierite gneisses respectively. Zircon ages reflect that continental crust in the NW of Madurai region resulted from the recycling of Archaean protolith of an igneous origin similar to the preserved crust in the southern part of Dharwar craton. The present SHRIMP U-Pb zircon ages are in close agreement with earlier published Nd isotopic data which suggest an extended precrustal history of their protoliths. The abraded zircon grains indicate multiple recycling and repeated metamorphism that has ultimately resulted in present day continental crust exposed in Madurai region. These SHRIMP U-Pb zircon ages from metapelitic UHT granulites are also significant to understanding the architecture of the SGT during the amalgamation of Gondwana in Neoproterozoic time.  相似文献   

18.
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.  相似文献   

19.
The Altos Cuchumatanes Range is made up of a core of igneous and metamorphic rocks, surrounded by lower Palaeozoic and Mesozoic sedimentary strata. These units constitute the westernmost exposure of basement rocks in Guatemala and represent some of the most important crustal units in the Maya Block. New laser ablation–inductively coupled plasma mass spectrometry U-Pb zircon geochronology allows better definition of their igneous ages, inheritance and petrologic evolution. The Altos Cuchumatanes magmatism occurred during the Middle Ordovician (461 Ma) and lower Pennsylvanian (312–317 Ma), replicating similar age trends present in southern Mexico (Acatlán Complex) and the Maya Block, from Chiapas to central Guatemala (Rabinal-Salamá area) and Belize (Maya Mountains). The U-Pb inheritance from cores of the studied zircons makes it possible to decipher the pre-magmatic history of the area. During the Late Ordovician to Permo-Carboniferous, the Altos Cuchumatanes and Maya Block were located adjacent to northeastern Mexico, near the Mixteco terrane, where Ordovician megacrystic granites intruded a passive-margin sedimentary sequence. The Ordovician granites present at the southern limit of the Maya Block, in the Altos Cuchumatanes, in central Guatemala and in Belize, are the result of partial crustal melting during the initial opening of the Rheic Ocean, when both Maya and Mixteco terranes would have lain close to NW Gondwana until the closure of that ocean. The crystallization of the early Pennsylvanian granites seems to be the result of an E-dipping subduction zone that accommodated convergence between Laurentia and Gondwana.  相似文献   

20.
For the first time, the U–Pb age is determined for detrital zircons of quartzite–schist sequences, which are part of the Precambrian basement of the Aktau–Mointy Block (Central Kazakhstan) along with Neoproterozoic felsic volcanic (925–920 Ma) and granitic (945–917 Ma) rocks [6]. We analyzed 219 zircon grains from small-grained quartzites of the northern part of the block (Mt. Bol’shoi Alabas) including 206 grains with concordant age (1149–1273, 1276–1975, 2354–2592 Ma). These ages indicate the Mesoproterozoic, Paleoproterozoic, and Neoarchean rocks as provenances. The youngest statistically significant age peak of 1209 Ma indicates that the quartzite–schist sequences accumulated 1200–900 Ma ago (at the end of the Mesoproterozoic and beginning of the Neoproterozoic) prior to the formation of the Early Neoproterozoic felsic rocks and granites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号