首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO3-2 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.  相似文献   

2.
Carbonate nodules and slabs in late Holocene shelly terrigenous deposits of the modern Fraser River delta (~49°N) are formed close to the seafloor by precipitation from saline pore waters of mainly fibrous to bladed crystals of high-Mg (~ 10–20 mol% MgCO3) calcite cement as coalescing isopachous crusts on grains. Previous reports that the cement is low-Mg calcite are not supported by this study. Highly negative δ13C values of ? 7 to ? 59‰ for the cements indicate that the bulk of their carbonate carbon was derived from the microbiological degradation of organic matter in the deltaic deposits during shallow burial. In particular, the production of biogenic methane (CH4) by anaerobic bacterial fermentation, its upward migration, chemical or biological oxidation to CO2 and neutralization in the near-surface sediment, and diffusion to microenvironments relatively enriched in organic components, are a possible set of conditions influencing the process and sites of carbonate cementation. Methane-derived Mg-calcite appears also to be the major submarine cement in several other modern occurrences of lithified shallow-water terrigenous sands and muds at non-tropical latitudes.  相似文献   

3.
This study measures the reaction rate of dolomite and aragonite (calcite) into Mg-calcite at 800, 850, and 900°C and 1.6 GPa. The dry synthetic dolomite-aragonite aggregate transformed very rapidly into dolomite-calcite polycrystalline aggregate while Mg-calcites formed at a relatively slow rate, becoming progressively richer in Mg with run time. We modeled the reaction progress semi-empirically by the first-order rate law. The temperature dependence of the overall transport rate of MgCO3 into calcite can be described by the kinetic parameters (E?=?231.7 kJ/mol and A o ?=?22.69 h?1). Extrapolation using the Arrhenius equation to the conditions during exhumation of UHPM rocks indicates that the reaction of dolomite with aragonite into Mg-saturated calcite can be completed as the P-T path enters the Mg-calcite stability field in a geologically short time period (<1 Ky). On the other hand, the extrapolation of the rate to prograde metamorphic conditions reveals that the Mg-calcite formed from dolomitic marble in the absence of metamorphic fluid may not reach Mg-saturation until temperatures corresponding to high-grade metamorphism (e.g., >340°C and >10 My). SEM-EDS analysis of individual calcite grains shows compositional gradients of Mg in the calcite grains. The Mg-Ca inter-diffusion coefficient at 850°C is around 1.68?×?10?14 m2/sec if diffusion is the major control of the reaction. The calculated closure temperatures for Ca-Mg inter-diffusion as a function of cooling rate and grain size reveal that Ca/Mg resetting in calcite in a dry polycrystalline carbonate aggregate (with grain size around 1 mm) may not occur at temperatures below 480°C at a geological cooling rate around 10°C/My, unless other processes, such as short-circuit interdiffusion along grain boundaries and dislocations, are involved.  相似文献   

4.
5.
The partitioning of Sr between calcite, dolomite and liquids is essentially independent of temperature between 150° and 350° C. The partition coefficients corrected for number of cation sites are b calc=0.096 and b dol= 0.048 for 1 mol cations/6 mol H2O liquid. Upon dilution the partition coefficients increase, but their ratio stays constant at about 2∶1. This ratio is due to the fact that calcite has twice as many Ca-sites for Sr-substitution as dolomite. The 2∶1 relationship is also observed in natural calcite and dolomite which have undergone diagenesis. The temperature independence of partitioning is caused by the relatively small thermal expansion of calcite and dolomite. Thermal expansion between 25° and 400° C was found to follow the equations V calc=7.0·10−4 T(°C)+36.95 and V dol=6.9·10−4 T(°C)+32.24, V: cm3/mol. Therefore calcite and dolomite cannot serve as a temperature indicator. To have an ideal geothermometer a mineral pair with high and low thermal expansion is required. Literature date demonstrate that wurtzite, sphalerite, and galena are such minerals.  相似文献   

6.
The most ubiquitous syn-sedimentary cements affecting Mururoa atoll are composed of magnesian calcite. Three main types are distinguished: fibrous, bladed and sparitic on the basis of petrography, morphology and MgCO3 concentration of the constituting crystals, while peloid infills, a particular form of HMC chemical precipitation, also exist. Petrographic evidence and isotopic signatures are compatible with marine precipitation. Mururoa atoll was exposed several times to meteoric diagenesis resulting in varied diagenetic alterations including selective dissolution and partial dolomitization of Mg-calcite cements. These alterations are responsible for substantial modifications of the initial cement fabrics and may introduce unconformities in the diagenetic chronology. The first stage of the partial dissolution of Mg-calcite induces the development of chalky, white friable zones within the initially crystalline, hard cement layers. At ultrascale, this is due to the creation of micro-voids along the elongate cement fibres. Advanced dissolution includes total disappearance of cement portions as attested to by large voids within the cement crust and/or between superposed cement layers. Mg-calcite dissolution is related to meteoric diagenesis during periods of Quaternary exposure. The creation of voids within Mg-calcite layers is due to the mechanical removal of previously altered calcium carbonate, a process suggesting marine or non-marine water flow, probably in the vadose environment. Selective dolomitization of Mururoa cements involves alternations of calcite and dolomite which form successive cement-like rinds within primary cavities. At Mururoa, these alternations are the result of selective dolomitization of the pre-existing Mg-calcite cements rather than successive precipitation of calcite and dolomite. Selective dolomitization of Mg-calcite cements at Mururoa indicates that a given cement succession is not necessarily a simple chronological sequence. Oxygen isotope values of dolomites are enriched in δ186 by about 3‰ PDB within calcite-dolomite pseudo-alternations. The dolomitizing fluid at Mururoa seems similar to present marine water although some mixture with meteoric water is probable to favour dissolution associated with dolomitization.  相似文献   

7.
Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.  相似文献   

8.
The pseudo-binary system Mg3Al2Si3O12–Na2MgSi5O12 modelling the sodium-bearing garnet solid solutions has been studied at 7 and 8.5 GPa and 1,500–1,950°C. The Na-bearing garnet is a liquidus phase of the system up to 60 mol% Na2MgSi5O12 (NaGrt). At higher content of NaGrt in the system, enstatite (up to ∼80 mol%) and then coesite are observed as liquidus phases. Our experiments provided evidence for a stable sodium incorporation in garnet (0.3–0.6 wt% Na2O) and its control by temperature and pressure. The highest sodium contents were obtained in experiments at P = 8.5 GPa. Near the liquidus (T = 1,840°C), the equilibrium concentration of Na2O in garnet is 0.7–0.8 wt% (∼6 mol% Na2MgSi5O12). With the temperature decrease, Na concentration in Grt increases, and the maximal Na2MgSi5O12 content of ∼12 mol% (1.52 wt% Na2O) is gained at the solidus of the system (T = 1,760°С). The data obtained show that most of natural diamonds, with inclusions of Na-bearing garnets usually containing <0.4 wt% Na2O, could be formed from sodium-rich melts at pressures lower than 7 GPa. Majoritic garnets with higher sodium concentrations (>1 wt% Na2O) may crystallize at a pressure range of 7.0–8.5 GPa. However the upper pressure limit for the formation of naturally occurring Na-bearing garnets is restricted by the eclogite/garnetite bulk composition.  相似文献   

9.
Calcite veins hosted in the Triassic Stockton, Lockatong and Passaic formations of the Newark Basin are investigated to reconstruct the fluid evolution. To constrain the parameters of calcite precipitation, a microthermometry study was carried, which reveals precipitation of calcite from a low to moderate saline H2O-NaCl fluid (0.4 to 13.2 wt% NaCl equiv.) under low to moderate hydrothermal (137 °C to 232 °C) conditions. This fluid composition is interpreted to reflect mixing between a deep basement-derived heated diluted fluid and relatively low to moderate saline diagenetic formation waters hosted in the different Triassic formations. Carbon and strontium isotope analysis on the vein calcites suggests that these elements are derived from the pre-Triassic basement and the sedimentary cover through fluid-rock interactions. The aforementioned geochemical findings are supported by Rare Earth Elements and Yttrium (REY) systematics and oxygen isotope data.The Late Triassic extensional activity and gravity-driven fluid flow mechanism facilitated the infiltration of meteoric waters to deeper lithostratigraphic units (i.e., Precambrian-Paleozoic basement-Triassic Stockton Formation) where they became heated. In response to the extensional tectonics, the deep-seated hydrothermal basement-derived diluted fluids migrated upward along the tectonic-related fractures and the major faults to upper shallow crustal levels. Here, the heated, diluted meteoric waters were mixed with low, moderately saline, and relatively cooler formation waters, leading to calcite precipitation. The pH increase is suggested to be a contributing factor in the precipitation of calcite.  相似文献   

10.
The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq. Fluid inclusions in the main and late-stage quartz and calcite are dominated by aqueous inclusions as well as hydrocarbon- and CO2-rich inclusions. The presence of abundant hydrocarbon fluid inclusions in the gold deposits provides evidence that at least during main periods of the hydrothermal activity responsible for gold mineralization, the ore fluids consisted of an aqueous solution and an immiscible hydrocarbon phase. Aqueous inclusions in the main stage quartz associated with gold mineralization (stage II) typically have a homogenization temperature range of 200–230°C and a modal salinity around 5.3 wt% NaCl eq. Homogenization temperatures and salinities of aqueous inclusions in the late-stage drusy quartz and calcite (stage III) typically range from 120°C to 160°C and from 2.0 to 5.6 wt% NaCl eq., respectively. In the paleo-oil reservoirs, aqueous fluid inclusions with an average homogenization temperature of 80°C are dominant in early diagenetic calcite. Fluid inclusions in late diagenetic pore- and fissure-filling calcite associated with bitumen are dominated by liquid C2H6, vapor CH4, CH4–H2O, and aqueous inclusions, with a typical homogenization temperature range of 90°C to 180°C and a salinity range of 2–8 wt% NaCl eq. It is suggested that the hydrocarbons may have been trapped at relatively low temperatures, while the formation of gold deposits could have occurred under a wider and higher range of temperatures. The timing of gold mineralization in the Youjiang basin is still in dispute and a wide range of ages has been reported for individual deposits. Among the limited isotopic data, the Rb–Sr date of 206 ± 12 Ma for Au-bearing hydrothermal sericite at Jinya as well as the Re–Os date of 193 ± 13 Ma on auriferous arsenian pyrite and 40Ar/39Ar date of 194.6 ± 2 Ma on vein-filling sericite at Lannigou may provide the most reliable age constraints on gold mineralization. This age range is comparable with the estimated petroleum charging age range of 238–185 Ma and the Sm–Nd date of 182 ± 21 Ma for the pore- and fissure-filling calcite associated with bitumen at the Shitouzhai paleo-oil reservoir, corresponding to the late Indosinian to early Yanshanian orogenies in South China. The close association of Carlin-type gold deposits and paleo-oil reservoirs, the paragenetic coexistence of bitumens with ore-stage minerals, the presence of abundant hydrocarbons in the ore fluids, and the temporal coincidence of gold mineralization and hydrocarbon accumulation all support a coeval model in which the gold originated, migrated, and precipitated along with the hydrocarbons in an immiscible, gold- and hydrocarbon-bearing, basinal fluid system.  相似文献   

11.
The styles and mechanisms of deformation associated with many variably dolomitized limestone shear systems are strongly controlled by strain partitioning between dolomite and calcite. Here, we present experimental results from the deformation of four composite materials designed to address the role of dolomite on the strength of limestone. Composites were synthesized by hot isostatic pressing mixtures of dolomite (Dm) and calcite powders (% Dm: 25%-Dm, 35%-Dm, 51%-Dm, and 75%-Dm). In all composites, calcite is finer grained than dolomite. The synthesized materials were deformed in torsion at constant strain rate (3 × 10−4 and 1 × 10−4 s−1), high effective pressure (262 MPa), and high temperature (750 °C) to variable finite shear strains. Mechanical data show an increase in yield strength with increasing dolomite content. Composites with <75% dolomite (the remaining being calcite), accommodate significant shear strain at much lower shear stresses than pure dolomite but have significantly higher yield strengths than anticipated for 100% calcite. The microstructure of the fine-grained calcite suggests grain boundary sliding, accommodated by diffusion creep and dislocation glide. At low dolomite concentrations (i.e. 25%), the presence of coarse-grained dolomite in a micritic calcite matrix has a profound effect on the strength of composite materials as dolomite grains inhibit the superplastic flow of calcite aggregates. In high (>50%) dolomite content samples, the addition of 25% fine-grained calcite significantly weakens dolomite, such that strain can be partially localized along narrow ribbons of fine-grained calcite. Deformation of dolomite grains by shear fracture is observed; there is no intracrystalline deformation in dolomite irrespective of its relative abundance and finite shear strain.  相似文献   

12.
Holocene carbonate sedimentation in Lake Manitoba, Canada   总被引:1,自引:0,他引:1  
W. M. LAST 《Sedimentology》1982,29(5):691-704
The carbonate mineral suite of the modern offshore bottom sediment of the South Basin of Lake Manitoba consists mainly of high magnesian calcite and dolomite with minor amounts of low-Mg calcite and aragonite. The high-Mg calcite is derived from inorganic precipitation within the water column in response to supersaturation brought about by high levels of organic productivity in the basin. Both dolomite and pure calcite are detrital in origin, derived from erosion of the surrounding carbonate-rich glacial deposits. Aragonite, present only in trace amounts in the offshore sediments, is bioclastic in origin. The upward increase in the amount of magnesian calcite in the post-glacial sediment record is attributed to increasing photosynthetic utilization of CO2 in the lake. Stratigraphic variation in the amount of magnesium incorporated into the calcite lattice is interpreted as reflecting a variable magnesium input to the lake from ground water and surface runoff, and possibly variable calcium removal in the precipitating lake water. The effects of long-term chemical weathering at the source and size segregation explain the changes in dolomite content throughout the section.  相似文献   

13.
The rates of grain growth of stoichiometric dolomite [CaMg(CO3)2] and magnesite (MgCO3) have been measured at temperatures T of 700–800°C at a confining pressure P c of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 μm, respectively, for CaMg(CO3)2, MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 μm for CaMg(CO3)2, MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (≃5 × 10−5 μm3/s) at T = 800°C is less than that for magnesite by a factor of ~30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates.  相似文献   

14.
Groundwater is a critical resource in Deoria district, as it is the main source of drinking water and irrigation. The aquifer has deteriorated to a high degree, during the last two to three decades, in quality and quantity due to high population growth and environmental pollution. More than 90% of the population get their drinking water from subsurface waters. Fifteen wells were sampled in June 2006 to probe the hydrogeochemical components that influence the water quality. The results show that groundwater have EC, TDS, Na+, Mg2+, HCO3 and TH higher than the WHO, 1997 maximum desirable limits. A hydrogeochemical numerical model for carbonate minerals was constructed using the PHREEQC package. The regression analysis shows that there are three groups of elements which are significantly and positively correlated. The main hydrochemical facies of the aquifer (Ca + Mg–HCO3) represents 33.33% of the total wells. The geochemical modeling demonstrated that the reactions responsible for the hydrochemical evolution in the area fall into three categories: (1) dissolution of salts, (2) precipitation of dolomite, (3) ion exchange. Solubility of dolomite, calcite, aragonite and gypsum were assessed in terms of the saturation index. The thermodynamic prerequisites for dolomite supersaturation reactions are satisfied by subsurface waters, since they are supersaturated with respect to dolomite, undersaturated (or in equilibrium) with respect to calcite, and undersaturated with respect to gypsum. The Ca2+ versus SO42− and Mg2+ versus SO42− trends are also compatible with homologous trends resulting from dolomite supersaturation.  相似文献   

15.
The Khut copper skarn deposit is located at about 50 km northwest of Taft City in Yazd province in the middle part of the Urumieh‐Dokhtar magmatic arc. Intrusion of granitoid of Oligocene–Miocene age into carbonate rocks of the Triassic Nayband Formation led to the formation of marble and a calcic skarn. The marble contains high grade Cu mineralization that occurs mainly as open space filling and replacement. Cu‐rich sulfide samples from the mineralized marble are also anomalous in Au, Zn, and Pb. In contrast, the calcic skarn is only weakly anomalous in Cu and W. The calcic skarn is divided into garnet skarn and garnet–pyroxene skarn zones. Paragenetic relationships and microthermometric data from fluid inclusions in garnet and calcite indicate that the compositional evolution of skarn minerals occurred in three main stages as follows. (i) The early prograde stage, which is characterized by Mg‐rich hedenbergite (Hd53.7Di42.3–Hd86.1Di9.5) with Al‐bearing andradite (69.8–99.5 mol% andradite). The temperature in the early prograde skarn varies from 400 to 500°C at 500 bar. (ii) The late prograde stage is manifested by almost pure andradite (96.2–98.4 mol% andradite). Based on the fluid inclusion data from garnet, fluid temperature and salinity in this stage is estimated to vary from 267 to 361°C and from 10.1 to 21.1 wt% NaCl equivalent, respectively. Pyrrhotite precipitation started during this stage. (iii) The retrograde stage occurs in an exoskarn, which consists of an assemblage of ferro‐actinolite, quartz, calcite, epidote, chlorite, sphalerite, pyrite, and chalcopyrite that partially replaces earlier mineral assemblages under hydrostatic conditions during fracturing of the early skarn. Fluids in calcite yielded lower temperatures (T < 260°C) and fluid salinity declined to ~8 wt% NaCl equivalent. The last stage mineralization in the deposit is supergene weathering/alteration represented by the formation of iron hydroxide, Cu‐carbonate, clay minerals, and calcite. Sulfur isotope data of chalcopyrite (δ34S of +1.4 to +5.2‰) show an igneous sulfur source. Mineralogy and mineral compositions of the prograde assemblage of the Khut skarn are consistent with deposition under intermediately oxidized and slightly lower fS2 conditions at shallow crustal levels compared with those of other typical Fe‐bearing Cu–Au skarn systems.  相似文献   

16.
Following ultrahigh temperature granulite metamorphism at ∼1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02–1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (∼0.92–0.95 g/cc) and low density (∼0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (∼8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00–10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during granulite metamorphism.  相似文献   

17.
Numerous mineral veins are hosted in a body of teschenite which is situated within the Lower Cretaceous flysch siliciclastics of the Silesian Unit at Tichá. Mineralogy, fluid inclusions, stable isotopes and trace elements have been studied in order to assess the origin of this mineralization. Three stages of vein cementation have been recognized, each of them being characterized by distinct mineral composition and genetic conditions. The first stage is composed of titanite, aegirine-augite to aegirine, annite, analcime and strontian apatite. These minerals originated from NaCl-rich, CaCl2-poor magmatic brine (total fluid salinities range between 47 and 57 wt%), leaving after crystallization of host teschenite in low-pressure (<1 kbar) environment. Crystallization temperatures reached ~390–510 °C for early phases, titanite and aegirine-augite. The second stage is formed by calcite, chlorite, dolomite, siderite, strontianite, quartz, pyrite and sphalerite. The parent fluids were low-salinity (0.5–4.5 wt% NaCl eq.) aqueous solutions with low content of strong REE-complexing ligands, that were progressively cooled during mineral precipitation (up to ~190 °C at the beginning, ~90 °C at the end of crystallization). These fluids are interpreted to be predominantly of external origin, derived from surrounding sedimentary sequences during diagenetic dewatering of clay minerals. The highly positive δ18O and near-zero δ13C values indicate an interaction of fluids with sedimentary carbonates. The third stage is formed by a dense net of calcite veinlets, which probably originated during tectonic deformations connected with orogenetic movements during the Tertiary. The source of strontium for first stage mineralization was probably related to the special conditions of magmatic evolution of the host teschenite, whereas strontium for second stage minerals could have been remobilized during hydrothermal alteration from earlier teschenite-hosted mineral phases and/or limestone.  相似文献   

18.
Field experiments were conducted over a 460-day period to assess the efficiency of different mixtures of organic substrates to remediate coalmine-generated acid mine drainage (AMD). Five pilot-scale, flow-through bioreactors containing mixtures of herbaceous and woody organic substrates along with one control reactor containing only limestone were constructed at the Tab-Simco site and exposed to AMD in situ. Tab-Simco is an abandoned coal mine near Carbondale, Illinois that produces AMD with pH ∼2.5 and notably high average concentrations of SO4 (5050 mg/L), Fe (950 mg/L), Al (200 mg/L), and Mn (44 mg/L). Results showed that the sequestration of SO4 and metals was achieved in all reactors; however, the presence and type of organic carbon matrix impacted the overall system dynamics and the AMD remediation efficiency. All organic substrate-based reactors established communities of sulfate reducing microorganisms that contributed to enhanced removal of SO4, Fe, and trace metals (i.e., Cu, Cd, Zn, Ni) via microbially-mediated reduction followed by precipitation of insoluble sulfides. Additional mechanisms of contaminant removal were active in all reactors and included Al- and Fe-rich phase precipitation and contaminant surface sorption on available organic and inorganic substrates. The organic substrate-based reactors removed more SO4, Fe, and Al than the limestone-only control reactor, which achieved an average removal of ∼19 mol% SO4, ∼49 mol% Fe, 36 mol% Al, and 2 mol% Mn. In the organic substrate-based reactors, increasing herbaceous content correlated with increased removal efficiency of SO4 (26–35 mol%), Fe (36–62 mol%), Al (78–83 mol%), Mn (2–6 mol%), Ni (64–81 mol%), Zn (88–95 mol%), Cu (72–85 mol%), and Cd (90–92 mol%), while the diversity of the intrinsic microbial community remained relatively unchanged. The extrapolation of these results to the full-scale Tab-Simco treatment system indicated that, over the course of a 460-day period, the predominantly herbaceous bioreactors could remove up to 92,500 kg SO4, 30,000 kg Fe, 8,950 kg Al, and 167 kg Mn, which represents a 18.3 wt%, 36.8 wt%, 4.1 wt% and 82.3 wt% increase in SO4, Fe, Al, and Mn, respectively, removal efficiency compared to the predominantly ligneous bioreactors.The results imply that anaerobic organic substrate bioreactors are promising technologies for remediation of coal-generated AMD and that increasing herbaceous content in the organic substrate matrix can enhance contaminant sequestration. However, in order to improve the remediation capacity, future designs must optimize not only the organic carbon substrate but also include a pretreatment phase in which the bulk of dissolved Fe/Al-species are removed from the influent AMD prior to entering the bioreactor because of 1) seasonal variations in temperature and redox gradients could induce dissolution of the previously formed redox sensitive compounds, and 2) microbially-mediated sulfate reduction activity may be inhibited by the excessive precipitation of Al- and Fe-rich phases.  相似文献   

19.
《Applied Geochemistry》2006,21(4):614-631
In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite > calcite > plagioclase > K-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  相似文献   

20.
We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2–30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5–17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10−6 and 10−3 s−1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, (n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at which that transition occurred was larger for samples with higher Mg content and smaller grain size. At given strain rates, constant temperature, and fixed grain size, the strength of calcite in the dislocation creep regime increased with solute content, while the strength in the diffusion creep regime was independent of Mg content. The results suggest that chemical composition will be an important element to consider when solid substitution can occur during natural deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号