首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Basin Lakes are two adjacent maar lakes located in the centre of the Western Volcanic Plains District of Victoria, Australia. Both lakes are saline and alkaline; West Basin Lake is meromictic whereas East Basin is a warm monomictic lake. The carbonate mineral suite of the modern offshore bottom sediments of these Basins consists mainly of dolomite and calcite, with smaller amounts of hydromagnesite and magnesite in West Basin and monohydrocalcite in East Basin. The dolomite, hydromagnesite, magnesite, and monohydrocalcite are endogenic in origin, being derived by primary inorganic precipitation within the water columns of the lakes or at the sediment-water interface. The calcite is biologically precipitated as ostracod valves. In addition to the carbonates in the modern offshore (deep-water) sediments, the lakes also contain a girdle of nearshore carbonate hardgrounds. Both beachrock and microbialites (algal boundstones) are present. These modern lithified carbonate units exhibit a wide range of depositional and diagenetic fabrics, morphologies and compositions. In West Basin, the hardgrounds are composed mainly of dolomite, hydromagnesite, and magnesite, whereas dolomite and monohydrocalcite dominate the East Basin sediments. Aragonite, high-Mg calcite, kutnahorite, siderite, and protohydromagnesite also occur in these lithified carbonate units. Stratigraphic variations in the carbonate mineralogy of the Holocene sediment record in the lakes were used to help decipher the palaeochemistry and palaeohydrology of the Basins. These changes, in conjunction with fluctuations in organic remains and fossil content, indicate a pattern of lake level histories similar to that deciphered from other maar lakes in western Victoria.  相似文献   

2.
Holocene dolomite forms in the sediment of Lake Hayward, a small permanent hypersaline lake in the Clifton-Preston Lakeland System, Western Australia. The geomorphological setting of dolomite formation in Lake Hayward is similar to the Coorong region in South Australia. Unlike in the Coorong region, dolomite in Lake Hayward does not form as a direct precipitate from the lake water, but is of diagenetic origin. This can be deduced from the following features: (1) the dolomite occurs only below 60–70 cm from the sediment-water interface, (2) dolomite occurs as luminescing cement, and (3) dolomite has pristine well-formed rhomb-shaped crystals. The source of magnesium for dolomitization is probably from the concentration on inflowing groundwater by evaporation and the selective removal of calcium by chemical and biological aragonite/calcite precipitation.  相似文献   

3.
The results of experiments on the hydrothermal dolomitization of calcite (between 252 and 295°C) and aragonite (at 252°C) by a 2 M CaCl2-MgCl2 aqueous solution are reported and discussed. Dolomitization of calcite proceeds via an intermediate high (ca. 35 mole %) magnesian calcite, whereas that of aragonite is carried out through the conversion of the reactant into a low (5.6 mole %) magnesian calcite which in turn transforms into a high (39.6 mole %) magnesian calcite. Both the intermediate phases and dolomite crystallize through a dissolution-precipitation reaction. The intermediate phases form under local equilibrium within a reaction zone surrounding the dissolving reactant grains. The volume of the reaction zone solution can be estimated from Sr2+ and Mg2+ partitioning equations. In the case of low magnesian calcite growing at the expense of aragonite at 252°C, the total volume of these zones is in the range of 2 × 10?5 to 2 × 10?4 1., out of 5 × 10?3 1., the volume of the bulk solution.The apparent activation energies for the initial crystallization of high magnesian calcite and dolomite are 48 and 49 kcal/mole, respectively.Calcite transforms completely into dolomite within 100 hr at 252°C. The overall reaction time is reduced to approximately 4 hr at 295°C. The transformation of aragonite to dolomite at 252°C occurs within 24 hr. The nature of the reactant dictates the relative rates of crystallization of the intermediate phases and dolomite. With calcite as reactant, dolomite growth is faster than that of magnesian calcite; this situation is reversed when aragonite is dolomitized.Coprecipitation of Sr2+ with dolomite is independent of temperature (within analytical error) between 252 and 295°C. Its partitioning, with respect to calcium, between dolomite and solution results in distribution coefficients in the range of 2.31 × 10?2 to 2.78 × 10?2.  相似文献   

4.
A strong correlation in the geometry and mineralogy of two cement generations of a Quaternary with a Precambrian calcarenite enables us to reconstruct the diagenetic history of the Precambrian limestone. Both calcarenites contain two cement generations (A and B) of which A consists of dolomite, B of calcite. The following diagenetic stages can be recognized: after deposition of the allochems in a shallow marine environment, cementation in the intertidal zone with magnesian calcite (cement A) led to the formation of beachrock (Stage 1). By lowering of the sea level, the beach rock was shifted into the supratidal zone, but still remained under the predominant influence of the sea water (breakers, spray). During longer periods of aridity, the magnesian calcite of cement A and of the allochems was transformed into dolomite by brines derived from sea water with very high Mg/Ca ratio (> 15), whereas aragonite and calcite remained unaffected. After further lowering of the sea, an increasing influence of meteoric water caused the wet transformation of aragonitic allochems to sparry calcite and to the precipitation of sparry calcitic cement B.  相似文献   

5.
Stoichiometric solubility constants of calcite in initially supersaturated solutions of various magnesium to calcium concentration ratios but identical ionic strength were determined at 25°C and one atmosphere total pressure.The thermodynamic solubility constant of calcite is used with ion pairing equations to interpret the data reported in this study. Results indicate that even though magnesian calcites, rather than pure calcite, precipitate from seawater solutions containing magnesium ions, the incorporation of MgCO3 in the calcite crystal lattice does not extensively alter the equilibrium calcium carbonate activity product.The equilibrium activity of the ionic species in solution and the composition of magnesian calcite overgrowths precipitated from solutions of similar composition are used to calculate the solubility of magnesian calcites. The values for magnesian calcite solubilities obtained by this approach are lower than those obtained from the dissolution kinetics of biogenic carbonates.  相似文献   

6.
In early calcite carbonatites of the Kovdor ore deposit four morphological types of dolomite are represented. In the first type, dolomite microcrystals occur as lamellae enclosed by optically continuous calcite. In the second, dolomite microcrystals occur as segmented rods, plates and xenomorphic grains, enclosed by optically discontinuous calcite, and in the third, dolomite is represented by grains of various morphologies, situated along calcite grain boundaries. The fourth type of dolomite occurs as a fine-grained aggregate, which develops along grain boundaries and cleavage cracks of calcite. From microscopic, scanning electron microscope and microprobe studies of these different types of dolomite microcrystals, as well as the calcite associated with them, it can be concluded that the first type of dolomite was exsolved from magnesian calcite during cooling. The second, and the third types of dolomite microcrystals were formed by recrystallization. The fourth type of dolomite was formed by metasomatic dolomitization. As the result of these two processes-recrystallization and metasomatic dolomitization-early dolomite microcrystals seldom occur. The composition of the early-formed primary magnesian calcite yielded temperatures of exsolution of dolomite from magnesian calcite between 665 and 700°C.  相似文献   

7.
Grain size and mineral composition of core sediments were used to investigate influences of various terrestrial and marine conditions, which have prevailed on the southwestern Black Sea shelf during the Holocene. Siliciclastic mud with small amounts of sand and gravel from nearby coastal hinterland is the principal sediment type, whereas sediments deposited near the shelf edge and the Istanbul Strait and off the Duru Lake (a paleo-river mouth) constitued large quantities of sand and gravel of both biogenic and terrigenic origin. Variable amounts of aragonite, 1 nmmicas, quartz, feldspars, calcite and dolomite constitute the dominant non-clay minerals in bulk sediments. The clay mineral assemblage in the 〈 2 μm fraction is made up of smectite, illite, kaolinite and chlorite. Aragonite and calcite are mainly derived from benthic accumulations, whereas feldspars (mainly plagioclase) and smectite reflect magmaticvolcanic provenance and the distribution of 1 nm-micas and chlorite correlate with nearby metamorphic sources onland. Nevertheless, grain size and mineral distribution generally indicate a combination of effects of wind and wave climate, longshore and offshore cyclonic currents, changing sea-level stands and nearby source rock and morphological conditions. It is also suggested that at least part of clay minerals could be derived from the northwesterly Danube River input.  相似文献   

8.
为了探讨准噶尔盆地西北缘乌尔禾-风城地区二叠系风城组白云质岩类的成因, 利用岩矿鉴定技术,地球化学分析技术等手段, 系统分析该套云质岩类的地球化学特征。研究表明,该区云质岩类有别于海相碳酸盐岩,受外物源的影响较大,成份复杂,多为过渡性岩类。以泥质白云岩和白云质泥岩和白云质粉砂岩为主,含有少量的凝灰质白云岩和白云质凝灰岩。岩石矿物学特征和地球化学分析数据均表明,研究区的云质岩类主要形成于水体安静、深度较大、盐度偏高的半封闭陆源近海湖湾环境。二叠系时期气候炎热,蒸发作用强烈与火山活动频繁,加之淡水补给相对匮乏,为该区的云质岩类形成提供了良好的镁离子来源和水动力条件。这时湖湾中沉积的富含文石或高镁方解石的泥岩或凝灰岩,在早成岩阶段经过渗透回流白云石化作用形成了大量泥质白云岩、白云质泥岩和白云质粉砂岩。在中晚成岩阶段,经过埋藏作用生成自形或半自形的细晶-中晶白云石。  相似文献   

9.
Carbonate ooze in the deep troughs between the Bahama Banks is a mixture of pelagic and bank-derived material. It consists of aragonite, calcite and magnesium calcite in a ratio of about 3:2:1. Where exposed in erosional cuts at the sea floor, this ooze lithifies within 100,000 years and is transformed into calcite micrite of only 3.5-5 mol % MgCO3. Where buried, the ooze maintains its original composition for at least 200,000-400,000 years and remains unlithified for tens of millions of years. Quite unexpectedly, the path of sea-floor diagenesis of peri-platform ooze was found to be the same as that of freshwater diagenesis. Most of the aragonite is leached, pteropod shells often leaving cement-lined moulds behind; magnesian calcite recrystallizes and loses magnesium; polyhedral calcite of 2-4 μm size appears as cement. The setting and the carbon-oxygen isotope ratios rule out any freshwater influence. Carbon isotope ratios remain heavy, oxygen ratios shift towards equilibrium with the cold bottom water. The calcite cement has 3.5-5 mol % MgCO3 and can be interpreted as the least soluble form of calcite emerging from alteration at the sea floor or, alternatively, as a direct precipitate from cold sea water. The change in the composition of calcite cements with water depth supports the second interpretation. In the Bahamas and elsewhere in the world ocean, magnesium in calcite cements decreases from the warm surface waters down to 700-1200 m, i.e. the boundary between intermediate and cold deep-water masses. Below this level, calcite prevails and magnesian calcite and aragonite cements are restricted to semi-enclosed seas with exceptionally warm bottom waters.  相似文献   

10.
近年来,随着对微生物白云石模式研究的不断深入,为解释“白云石问题”提供了新思路。前人对微生物白云石成因研究侧重于微生物对未固结沉积物的改造,即有机准同生白云石化作用,这与实验室中以微生物为媒介形成的“有机原生白云石”在成因机理上存在差异。笔者将微生物白云石机理引入湖相原生白云石成因解释中,认为在湖水—沉积物交界处也会发生微生物成因的原生白云石沉淀,即有机原生白云石。湖水与沉积物交界处的微环境存在明显区别,总体可分为有氧和缺氧2种亚环境,不同亚环境中生活有不同的微生物群落。根据湖泊亚环境特性和微生物种类及其在白云石形成过程中所发挥的作用,可以区分出细菌有氧氧化模式、硫酸盐还原模式和产甲烷模式3种微生物白云石模式。不同模式对应于不同的湖泊环境: 细菌有氧氧化模式主要发生于有氧、高Mg/Ca值的咸水/盐湖环境;硫酸盐还原模式主要发生于缺氧、高Mg/Ca值的咸水/盐湖环境;产甲烷模式主要发生于缺氧、低Mg/Ca值的淡水/咸水湖环境。另外,还探讨了pH值变化、SO42-的存在和硫化物对镁水合物脱水的影响以及微生物白云石沉淀的环境因子。对微生物成因的原生白云石模式的深入认识,将为湖相白云石成因研究提供新的理论基础和研究思路。  相似文献   

11.
The seeded precipitation (crystal growth) of aragonite and calcite from sea water, magnesium-depleted sea water, and magnesium-free sea water has been studied by means of the steady-state disequilibrium initial rate method. Dissolved magnesium at sea water levels appears to have no effect on the rate of crystal growth of aragonite, but a strong retarding effect on that of calcite. By contrast, at levels less than about 5 per cent of the sea water level, Mg has little or no effect on calcite growth. Extended crystal growth on pure calcite seeds in sea water of normal Mg content resulted in the crystallization of magnesium calcite overgrowths, containing 7–10 mole % MgCO3 in solid solution. This suggests that the rate inhibition by Mg is due to its incorporation within the calcite crystal structure during growth, which causes the resulting magnesian calcite to be considerably more soluble than pure calcite. The standard free energy of formation of 8.5 mole% Mg calcite calculated on this assumption is in good agreement with independent estimates of magnesian calcite stability.From the work of Katz (Geochim. Cosmochim. Acta37, 1563–1586, 1973), Plummer and Mackenzie (Amer. J. Sci. 273, 515–522, 1974), and the present paper, it can be predicted that the most stable calcite in Ca-Mg exchange equilibrium with sea water contains between 2 and 7 mole%MgCO3 in solid solution. Likewise, calcites containing more than 8.5 mole% MgCO3 are less stable, and those containing less than 8.5 mole% MgCO3 are more stable than aragonite plus Ca and Mg in sea water.  相似文献   

12.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   

13.
The Miocene Port Campbell Limestone in the Otway Basin (Port Campbell Embayment), south-eastern Australia, is a shallowly buried (<350 m), temperate carbonate grainstone which consists primarily of benthonic foraminifera, bryozoans, brachiopods, echinoids and planktonic foraminifera. Volumetrically insignificant calcite cements include scalenohedral, blocky and syntaxial overgrowths. Dolomite is present in variable amounts (1–25%), scattered throughout the unit as euhedral rhombs, usually comprising <2% of the whole rock volume. The dolomite post-dates the calcite cements and is mainly an interparticle cement with crystal size varying between 10 and 150 μm (mean 50 μm). Under cathodoluminescence the dolomite rhombs have a dull core and a nonluminescent outer rim. The dolomite is nonstoichiometric, Ca-rich (Ca54–62Mg38–46), with high trace element concentrations. The Mn concentrations range from 0 to 310 p.p.m. in the crystal cores (mean 140 p.p.m.) and 80–240 p.p.m. in the crystal rims (mean 140 p.p.m.). The Fe concentrations increase from the crystal cores (range 640–5690 p.p.m.; mean 2030 p.p.m.) to the crystal rims (range 2840–9440 p.p.m.; mean 6040 p.p.m.), whereas the Sr concentrations decrease from the crystal cores (range 690–1510 p.p.m.; mean 1280 p.p.m.) to the crystal rims (620–1240 p.p.m.; mean 930 p.p.m.). The δ13CPDB values of the dolomite range between +2.5 and +2.6%, whereas the δ18OPDB values range from +0.3% to+0.6%. This dolomite occurrence supports the idea that marine or near-marine dolomite can form not only syndepositionally, but also in the shallow subsurface of temperate units, soon after sediment deposition, under reducing conditions. The fine-grained, low-permeability nature of the Port Campbell Limestone contributed to the reducing conditions at shallow depth, the high trace element concentrations of the dolomite (especially in Fe) and the near marine composition of the dolomitizing fluids, as large volumes of meteoric water were inhibited.  相似文献   

14.
选择青藏高原14个代表性现代湖泊的表层沉积物为研究对象,它们是冷湖、大苏干湖、小苏干湖、大柴旦湖、小柴旦湖、托素湖、尕海、茶卡湖、唐古拉-1、错鄂、乃日平错、纳木错、空姆错和普莫雍错,探讨这些湖泊碳酸盐矿物组成及相应氧稳定同位素组成的影响因素。XRD结果显示这些湖泊的碳酸盐矿物多以方解石为主,并含白云石。其中冷湖以白云石为主,尕海还含有一定量的文石。碳酸盐氧同位素分析结果显示总碳酸盐δ18O在-15.9‰到2.6‰范围变化,方解石δ18O变化范围为-16.2‰~3.9‰,白云石δ18O变化在-15.3‰~-5.4‰范围内。通过氧同位素与湖区环境因素的相关性分析,认为总碳酸盐δ18O受湖水δ18O组成、温度、降水量/蒸发量、盐度、海拔和纬度多种因素影响;方解石δ18O主要受湖水δ18O、温度、盐度、海拔和纬度的影响;白云石δ18O受降水量/蒸发量和盐度的影响。总碳酸盐δ18O对湖水δ18O、温度、海拔和纬度的响应是以方解石为载体而体现的;总碳酸盐δ18O对降水量/蒸发量的响应则归因于白云石δ18O对其的响应结果;另外总碳酸盐δ18O通过方解石和白云石δ18O的叠加作用响应于盐度。该研究初步建立了总碳酸盐、方解石和白云石氧同位素与环境各个指标之间的响应关系,对于揭示过去青藏高原地区环境变化有重要意义。  相似文献   

15.
米粒状白云石及其出溶成因   总被引:4,自引:0,他引:4  
米粒状白云石产于奥陶系近岸碳酸盐岩序列的云斑(生屑)泥晶灰岩、砾屑灰岩和叠层石灰岩中,在虫孔和砾屑粒间最为富集,外形为伸长菱面体,薄片中呈米粒状.晶体无环带或雾心,但内部含大量呈规则分布的细小方解石“包体”,结晶C轴垂直于晶体延长方向.与背景方解石泥晶相比,Fe、Mn、Na和Ba含量较高,Sr含量较低.C轴的固定取向排除了石膏假晶的可能,也不是普通白云石化或交代钡白云石的结果,推测是沉淀镁方解石重结晶后在压力增加的条件下经出溶作用形成.  相似文献   

16.
本文利用目前有关含鲜方解石以及水-碳酸钙系统的研究成果,对水-含磷方解石系统的模型化作了初步的尝试;然后以该系统为核心,拓展出了一个包括气候、水文及不化学等影响因素在内的湖泊综合模型,并运用该湖泊模型定量化地探讨了湖泊中常见的由气候季节性变化所控制的,由交替富含碳酸盐和碎屑物的层系所构成的韵律沉积现象,展示了该类湖粕的水化学演化进程,证明了韵律中的碳酸直轲在每年的夏季形成。  相似文献   

17.
回灌式开采是目前普遍提倡的保持热储压力、减缓水位下降、实现地热资源可持续开发利用的有效手段之一。外源水回灌是近年来探讨的新思路,是易于回灌的碳酸盐岩储层的优选方案。本文针对天津东丽湖地区蓟县系雾迷山组白云岩热储,通过开展储层条件下水-岩相互作用实验,探讨了未处理湖水回灌的可行性和热储层的地球化学响应。结果表明,未经处理湖水回灌后,其TDS显著降低,说明发生了沉淀,经计算沉淀量为142.6 mg·L-1,相当于矿物质量增加了0.09%。反应初期阶段,斜长石发生溶解,释放出K、Ca、Na等碱金属和SiO2等组分;导致溶液中白云石、方解石和钾长石过饱和而沉淀析出;随着反应进行,不全等溶解沉淀作用使部分白云石发生溶解,而方解石持续沉淀;伊利石是反应过程中形成的主要黏土矿物,其对储层结构的影响取决于其形状。基于现有实验结果,认为未处理湖水直接回灌对白云岩热储的影响较小,不会破坏储层结构  相似文献   

18.
The significance of stromatolites as depositional environmental indicators and the underlying causes of lamination in the lacustrine realm are poorly understood. Stromatolites in a ca 600 m thick Miocene succession in the Ebro Basin are good candidates to shed light on these issues because they are intimately related to other lacustrine carbonate and sulphate facies, grew under variable environmental conditions and show distinct lamination patterns. These stromatolites are associated with wave‐related, clastic‐carbonate laminated limestones. Both facies consist of calcite and variable amounts of dolomite. Thin planar stromatolites (up to 10 cm thick and less than 6 m long) occurred in very shallow water. These stromatolites represented first biological colonization after: (i) subaerial exposure in the palustrine environment (i.e. at the beginning of deepening cycles); or (ii) erosion due to surge action, then coating very irregular surfaces on laminated limestones (i.e. through shallowing or deepening cycles). Sometimes they are associated with evaporative pumping. Stratiform stromatolites (10 to 30 cm high and tens of metres long) and domed stromatolites (10 to 30 cm high and long) developed in deeper settings, between the surge periods that produced hummocky cross‐stratification and horizontal lamination offshore. Changes in stromatolite lamina shape, and thus in the growth forms through time, can be attributed to changes in water depth, whereas variations in lamina continuity are linked to water energy and sediment supply. Growth of the stromatolites resulted from in situ calcite precipitation and capture of minor amounts of fine‐grained carbonate particles. Based on texture, four types of simple laminae are distinguished. The simple micrite and microsparite laminae can be grouped into light and dark composite laminae, which represent, respectively, high and low Precipitation/Evaporation ratio periods. Different lamination patterns provide new ideas for the interpretation of microbial laminations as a function of variations in climate‐dependent parameters (primarily the Precipitation/Evaporation ratio) over variable timescales.  相似文献   

19.
青海湖是我国唯一报道过的现代湖底沉积物中白云石、方解石和文石等多种碳酸盐矿物共存的高原内陆咸水湖泊。以青海湖水和除菌青海湖水作为载体,以CaCl_2和MgCl_2·6 H_2O作为反应原料,在实验室常温条件下采取控制变量法制备出不同浓度Mg~(2+)参与下的钙质沉淀物,探讨Mg~(2+)浓度对沉淀物类型的影响。仅添加CaCl_2时,青海湖水中的沉淀物主要是石膏(Ca SO_4·2 H_2O)和球霰石(CaCO_3);在添加CaCl_2的同时添加MgCl_2·6 H_2O,沉淀物的石膏消失,完全转变成碳酸盐矿物,包括方解石和球霰石;当湖水中Mg~(2+)浓度为0.62 mol/L时,球霰石消失,沉淀物变为方解石和文石;随着Mg~(2+)浓度继续升高,文石含量稳步增加,方解石含量则逐渐减少,当Mg~(2+)浓度达到1.22 mol/L或更高时,方解石全部消失,沉淀物仅剩文石。实验结果表明,青海湖水中较高浓度的SO_4~(2-)对碳酸钙晶体生长有抑制作用,而额外加入的Mg~(2+)可以解除SO_4~(2-)的抑制作用,使得Ca~(2+)与HCO_3~-和CO_3~(2-)结合形成碳酸钙。此外,碳酸钙的同质多像类型也明显受到Mg~(2+)浓度的控制,随着湖水中Mg~(2+)浓度增加,方解石、球霰石不再稳定,而文石逐渐占主导地位,当Mg/Ca值达到6.1时,反应产物中仅有文石稳定存在。  相似文献   

20.
Geochemical controls on a calcite precipitating spring   总被引:2,自引:0,他引:2  
A small spring fed stream was found to precipitate calcite by mainly inorganic processes and in a nonuniform manner. The spring water originated by rainwater falling in a 0.8 km2 basin, infiltrating, and dissolving calcite and dolomite followed by dissolution of gypsum or anhydrite. The Ca2+/Mg2+ indicates that calcite is probably precipitated in the subsurface from a supersaturated solution. This water emerges from the spring still about 5 times supersaturated with respect to calcite and continues calcite precipitation. When 10 times supersaturation is reached, due to CO2 degassing the precipitation is more rapid. The calcite accumulation from the stream with a flow of 5 l/s is calculated to be 12600 kg/yr with the highest rates in areas where CO2 degassing is the greatest. The non-equilibrium, as shown by the high calcite supersaturation, is also reflected in a variable partitioning pattern for Sr2+ between the water and calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号