首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on archival Hubble Space Telescope images, we have performed stellar photometry for eight edge-on spiral and irregular galaxies. We have identified stars with ages of 20, 50, 80, 160, and 500 Myr in the derived Hertzsprung-Russell diagrams and constructed their number density distributions perpendicularly to the plane of the galactic disk. We have determined the sizes of the stellar subsystems and constructed the size-age diagrams for the stars constituting these subsystems. The stellar subsystems have been found to expand in all of the investigated galaxies within the range of ages studied (from 20 to 500 Myr). The expansion velocity of the subsystems decreases as one recedes from the galactic plane. The subsystems with ages of 1.5 and 6 Gyr also exhibit an increase in their sizes with age. The sizes of these subsystems approach those of the thick disk consisting of red giants. Our results confirm the model of thick-disk formation in irregular and low-mass spiral galaxies through thin-disk expansion.  相似文献   

2.
We present high-quality long-slit spectra for three nearby powerful radio galaxies – 3C 293, 3C 305 and PKS 1345+12. These were taken with the aim of characterizing the young stellar populations (YSP), and thereby investigating the evolution of the host galaxies, as well as the events that triggered the activity. Isochrone spectral synthesis modelling of the wide wavelength coverage spectra of nuclear and off-nuclear continuum-emitting regions have been used to estimate the ages, masses and luminosities of the YSP component, taking full account of reddening effects and potential contamination by activity-related components. We find that the YSP make a substantial contribution to the continuum flux in the off-nuclear regions on a radial scale of 1–20 kpc in all three objects. Moreover, in two objects we find evidence for reddened post-starburst stellar populations in the near-nuclear regions of the host galaxies. The YSP are relatively old (0.1–2 Gyr), massive  (109 < M YSP < 2 × 1010 M)  and make up a large proportion (∼1–50 per cent) of the total stellar mass in the regions of the galaxies sampled by the observations. Overall, these results are consistent with the idea that the nuclear activity of active galactic nuclei in some radio galaxies is triggered by major gas-rich mergers. Therefore, these radio galaxies form part of the subset of early-type galaxies that is evolving most rapidly in the local Universe. Intriguingly, the results also suggest that the radio jets are triggered relatively late in the merger sequence, and that there is an evolutionary link between radio galaxies and luminous/ultraluminous infrared galaxies.  相似文献   

3.
Based on archival Hubble Space Telescope images, we have performed stellar photometry of several fields in the isolated spiral galaxies NGC 6503 and NGC 6946 with high peculiar velocities. Based on the TRGB method, we have determined the distances to the galaxies: D = 6.30 ± 0.10 Mpc for NGC 6503 and D = 6.72 ± 0.15 Mpc for NGC 6946. The current stellar content of the galaxies does not differ from that of other similar galaxies. The metallicity for young stars in NGC 6503 is Z = 0.02 (corresponding to the solar metallicity), while the metallicity for stars in NGC 6946 reaches Z = 0.05. Very few old globular clusters have been found in NGC 6946, while they have not been found at all in NGC 6503. The number density distribution of stars with different ages in NGC 6503 does not differ from the analogous distributions in other galaxies. The large sizes of the thick disk in NGC 6503, which is clearly seen up to 6 kpc from the galactic disk plane and whose possible extension is noticeable up to 8.6 kpc from the plane, are a difference. The sizes of the region occupied by red giants of the disk in NGC 6503 are 51 × 17 kpc, which are not much larger than the sizes of this galaxy from H I radio observations.  相似文献   

4.
We have discovered a population of extremely red galaxies at z  ≃ 1.5 which have apparent stellar ages of ≳ 3 Gyr, based on detailed spectroscopy in the rest-frame ultraviolet. In order for galaxies to have existed at the high collapse redshifts indicated by these ages, there must be a minimum level of power in the density fluctuation spectrum on galaxy scales. This paper compares the required power with that inferred from other high-redshift populations: damped Lyα absorbers and Lyman-limit galaxies at z  ≃ 3.2. If the collapse redshifts for the old red galaxies are in the range z c ≃ 6–8, there is general agreement between the various tracers on the required inhomogeneity on 1-Mpc scales. This level of small-scale power requires the Lyman-limit galaxies to be approximately ν ≃ 3.0 fluctuations, implying a very large bias parameter b  ≃ 6. If the collapse redshifts of the red galaxies are indeed in the range z c = 6–8 required for power spectrum consistency, their implied ages at z  ≃ 1.5 are between 3 and 3.8 Gyr for essentially any model universe of current age 14 Gyr. The age of these objects as deduced from gravitational collapse thus provides independent support for the ages estimated from their stellar populations. Such early-forming galaxies are rare, and their contribution to the cosmological stellar density is consistent with an extrapolation to higher redshifts of the star formation rate measured at z  < 5; there is no evidence for a general era of spheroid formation at extreme redshifts.  相似文献   

5.
Using panoramic and long-slit spectroscopy at the 6-m telescope of SAO RAS, we studied the stellar population and kinematics of five early-type disc galaxies—members of the NGC2300 group. The evolution of galaxies appears to be absolutely out of synch: while the average age of the stars in the central regions of the galaxies located close to the center of the group ranges from 2 to 7 Gyr, the peripheral spiral galaxies have old nuclei and bulges, with the ages of 10–15 Gyr. The brightest galaxy of the NGC2300 group, which up to now has been considered to be lenticular, of the SA0 type, turned out to be extremely hot dynamically: its bulge rotates slowly, v/σ = 0.06, and the outer parts do not rotate at all.We conclude that the kinematics of the stellar component of NGC2300 indicates that it is not a disc galaxy, but a triaxial spheroid.  相似文献   

6.
We study the stellar population of galaxies with active star formation, determining ages of the stellar components by means of spectral population synthesis of their absorption spectra. The data consist of optical spectra of 185 nearby ( z 0.075) emission-line galaxies . They are mostly H  ii galaxies, but we also include some starbursts and Seyfert 2s, for comparison purposes. They were grouped into 19 high signal-to-noise ratio template spectra, according to their continuum distribution, absorption- and emission-line characteristics. The templates were then synthesized with a star cluster spectral base.
The synthesis results indicate that H  ii galaxies are typically age-composite stellar systems, presenting important contributions from generations up to as old as 500 Myr. We detect a significant contribution of populations with ages older than 1 Gyr in two groups of H  ii galaxies. The age distributions of stellar populations among starbursts can vary considerably despite similarities in the emission-line spectra. In the case of Seyfert 2 groups we obtain important contributions from the old population, consistent with a bulge.
From the diversity of star formation histories, we conclude that typical H  ii galaxies in the local Universe are not systems presently forming their first stellar generation.  相似文献   

7.
New calibrations of spectrophotometric indices of elliptical galaxies as functions of spectrophotometric indices are presented, permitting estimates of mean stellar population ages and metallicities. These calibrations are based on evolutionary models including a two-phase interstellar medium, infall and a galactic wind. Free parameters were fixed by requiring that models reproduce the mean trend of data in the colour–magnitude diagram as well as in the plane of indices  Hβ–Mg2  and  Mg2–〈Fe〉  . To improve the location of faint ellipticals  ( M B > −20)  in the  Hβ–Mg2  diagram, downsizing was introduced. An application of our calibrations to a sample of ellipticals and a comparison with results derived from single stellar population models are given. Our models indicate that mean population ages span an interval of 7–12 Gyr and are correlated with metallicities, which range from approximately half up to three times solar.  相似文献   

8.
We have investigated the stellar population properties in the central regions of a sample of lenticular galaxies with bars and single-exponential outer stellar disks using the data from the SAURON integral-field spectrograph retrieved from the open Isaac Newton Group Archive. We have detected chemically decoupled compact stellar nuclei with a metallicity twice that of the stellar population in the bulges in seven of the eight galaxies. A starburst is currently going on at the center of the eighth galaxy and we have failed to determine the stellar population properties from its spectrum. The mean stellar ages in the chemically decoupled nuclei found range from 1 to 11 Gyr. The scenarios for the origin of both decoupled nuclei and lenticular galaxies as a whole are discussed.  相似文献   

9.
With the means of panoramic spectroscopy at the SAO RAS BTA telescope, we investigated the properties of stellar populations in the central regions of five early-type galaxies—the NGC524 group members. The evolution of the central regions of galaxies looks synchronized: the average age of stars in the bulges of all the five galaxies lies in the range of 3–6Gyr.Four of the five galaxies revealed synchronized bursts of star formation in the nuclei 1–2 Gyr ago. The only galaxy, in which the ages of stellar population in the nucleus and in the bulge coincide (i.e. the nuclear burst of star formation did not take place) isNGC502, the farthest from the center of the group of all the galaxies studied.  相似文献   

10.
We argue that a combined evidence from galactic and extragalactic studies suggests that a major star formation in giant galaxies is preceded by an evolutionary phase at which a strong galactic wind driven by the initial burst of star formation enriches the gaseous protogalaxy with metals and heats it up, so that the latter turns over from contraction to expansion. The result is the ejection of enriched material from the outer part of the protogalaxy into the intergalactic space, while the inner part, after a delay of about one to a few Gyr, finally contracts and cools down to form the galactic major stellar component (the hot model of galaxy formation). The paper presents a specific mechanism to produce a hot protogalaxy according to which an early galactic wind is imparting energy and momentum into a collapsing protogalaxy whose mass is contained mainly in clouds and only a small portion is in the intercloud gas that provides pressure confinement for the clouds. The model is then capable of accounting for the nearly equal mass and iron abundance in cluster giant galaxies and the intracluster gas provided the observationally plausible input parameters for giant galaxies and early galactic winds are adopted. It also predicts the formation of long-lived X-ray coronae with characteristics similar to those observed around giant ellipticals.The model specifies a characteristic length-scale that can be very naturally interpreted as a size for a stellar system to come; a very encouraging result is that it perfectly fits in with a typical size of giant ellipticals.  相似文献   

11.
We present William Herschel Telescope spectropolarimetry observations of a complete RA-limited sample of nine low-redshift  (0.05< z <0.2)  3CR radio sources in order to investigate the nature of the ultraviolet (UV) excess in nearby powerful radio galaxies. Of the nine galaxies studied in detail from this sample, we find that four show a measurable UV excess following nebular continuum subtraction, but none of the sources shows significant polarization in the UV. One of the radio galaxies with a UV excess – 3C 184.1 – shows evidence for broad permitted lines and hence direct active galactic nucleus (AGN) light. In the remaining three galaxies we argue that the most likely contributor to the UV excess is a young stellar component. For these three galaxies we find that the best-fitting model for the optical/UV continuum consists of a combination of an old stellar population  (10–15 Gyr  old elliptical galaxy) plus a reddened young stellar population  (0.05–2 Gyr)  . The reddened young stellar component typically accounts for half of the total flux at 4780 Å, following nebular continuum subtraction, and   E ( B - V )  values of between 0.2 and 0.7 mag are required. However, for the majority of sources in our sample (six out of nine), continuum modelling provides no evidence for a significant young stellar component in the nuclear regions of the host galaxies. Our results are discussed in the context of far-infrared evidence for star formation activity.  相似文献   

12.
G01 New evidence for a connection between massive black holes and ULX G02 Long‐Term Evolution of Massive Black Hole Binaries G03 NBODY Meets Stellar Population Synthesis G04 N‐body modelling of real globular star clusters G05 Fokker‐Planck rotating models of globular clusters with black hole G06 Observational Manifestation of chaos in spiral galaxies: quantitative analysis and qualitative explanation G07 GRAPE Clusters: Beyond the Million‐Body Problem G08 Orbital decay of star clusters and Massive Black Holes in cuspy galactic nuclei G09 An Edge‐on Disk Galaxy Catalog G10 Complexes of open clusters in the Solar neighborhood G11 Search for and investigation of new stellar clusters using the data from huge stellar catalogues G12 Computing 2D images of 3D galactic disk models G13 Outer Pseudoring in the Galaxy G14 Where are tidal‐dwarf galaxies? G15 Ultra compact dwarf galaxies in nearby clusters G16 Impact of an Accretion Disk on the Structure of a stellar cluster in active galactic nuclei G17 Order and Chaos in the edge‐on profiles of disk galaxies G18 On the stability of OB‐star configurations in the Orion Nebula cluster G19 Older stars captured in young star clusters by cloud collapse G20 General features of the population of open clusters within 1 kpc from the Sun G21 Unstable modes in thin stellar disks G22 From Newton to Einstein – Dynamics of N‐body systems G23 On the relation between the maximum stellar mass and the star cluster mass  相似文献   

13.
Based on archival Hubble Space Telescope ACS/WFC images, we have performed stellar photometry for more than 0.6 million stars in the interacting galaxies NGC 5194 and NGC 5195 of the M51 system. Stars of various ages have been identified on the constructed Hertzsprung-Russell diagram: blue and red supergiants, AGB stars, and red giants. The distance to M51 has been measured from the position of the tip of the red giant branch, D = 9.9 ± 0.7 Mpc. We have determined the change in the metallicity of red supergiants along the galactic radius in NGC 5194. Despite the gravitational interaction, the distribution of stars in NGC 5194 does not differ from that in isolated galaxies. The asymmetric stellar structures of NGC5195 (the so-called “feathers”) formed through the interaction of two galaxies have been found to consist mostly of AGB stars.  相似文献   

14.
Observations of the pair of galaxies VV 330 with the SCORPIO multimode instrument on the 6-m Special Astrophysical Observatory telescope are presented. Large-scale velocity fields of the ionized gas in Hα and brightness distributions in continuum and Hα have been constructed for both galaxies with the help of a scanning Fabry-Perot interferometer. Long-slit spectroscopy is used to study the stellar kinematics. Analysis of the data obtained has revealed a complex structure in each of the pair components. Three kinematic subsystems have been identified in UGC 5600: a stellar disk, an “inner gas ring” turned with respect to the disk through ~80°, and an outer gas disk. The stellar and outer gas disks are noncoplanar. Possible scenarios for the formation of the observed multicomponent kinematic galactic structure are considered, including the case where the large-scale velocity field of the gas is represented by the kinematic model of a disk with a warp. The velocity field in the second galaxy of the pair, UGC 5609, is more regular. A joint analysis of the data on the photometric structure and the velocity field has shown that this is probably a late-type spiral galaxy whose shape is distorted by the gravitational interaction, possibly, with UGC 5600.  相似文献   

15.
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilize detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc. We find that star formation efficiency is independent of galactic mass, while massive discs have, on average, lower gas fractions and are redder than their low-mass counterparts; put together, these findings convincingly suggest that massive spirals are older than low-mass ones. We evaluate the effective ages of the galaxies of our sample and we find that massive spirals must be several Gyr older than low-mass ones. We also show that these galaxies (having rotational velocities in the 80–400 km s−1 range) cannot have suffered extensive mass losses, i.e. they cannot have lost during their lifetime an amount of mass much larger than their current content of gas+stars.  相似文献   

16.
We present the results of observations of a sample of isolated lenticular galaxies, performed at the SCORPIO and SCORPIO-2 spectrographs of the 6-meter BTA telescope of the SAO RAS in the long-slit mode. By direct spectra approximation, using the evolutionary synthesis models, we have measured the radial profiles of the rotation velocity as well as the dispersions of velocities, average age, and average metallicity of stars in 12 objects. The resulting average ages of the stellar population in bulges and discs fill an entire range of possible values from 1.5 to 15 Gyr which indicates the absence in the isolated lenticular galaxies, unlike in the members of groups and clusters, of a certain epoch when the structural components are formed: they could have been formed at a redshift of z > 2 as well as only several billion years ago. Unlike the S0 galaxies in a more dense environment, isolated galaxies typically have the same age of stars in the bulges and discs. The lenses and rings of increased stellar brightness, identified from the photometry of 7 of 11 galaxies, do not significantly differ from the stellar discs by the properties of stellar populations and velocity dispersion of stars. We draw a conclusion that the final arrangement of the morphological type of a lenticular galaxy in complete isolation is critically dependent on the possible modes of accretion of the cold external gas.  相似文献   

17.
Simple theoretical arguments indicate that cooled interstellar gas in bright elliptical galaxies forms into a young stellar population having a bottom-heavy but optically luminous initial mass function extending to approximately 2 M middle dot in circle. When the colors and spectral features of this young population are combined with those of the underlying old stellar population, the apparent ages are significantly reduced, similar to the relatively young apparent ages observed in many elliptical galaxies. Galactic mergers are not required to resupply young stars. The sensitivity of continuous star formation to LB and LX&solm0;LB is likely to account for the observed spread in apparent ages among elliptical galaxies. Local star formation is accompanied by enhanced stellar Hbeta equivalent widths, stronger optical emission lines, more thermal X-ray emission, and lower apparent temperatures in the hot gas. The young stars should cause M&solm0;L to vary with galactic radius, perturbing the fundamental plane of the old stars alone.  相似文献   

18.
旋涡星系的颜色梯度反映了其星族构成沿径向的分布,包含了星系恒星形成历史的信息.因此,对旋涡星系颜色梯度的研究有助于理解星系的形成和演化过程.大部分旋涡星系存在负的颜色梯度,其主要原因是旋涡星系存在星族梯度.颜色梯度与星系的面亮度之间存在内禀的相关,表明质量面密度在星系的形成和演化过程中具有重要作用.  相似文献   

19.
We analyze the R-and K s-band photometric profiles for two independent samples of edge-on galaxies. The thickness of old stellar disks is shown to be related to the relative masses of the spherical and disk components of galaxies. The radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with increasing total mass-to-light ratio of the galaxies, which reflects the relative contribution of the dark halo to the total mass, and with decreasing central deprojected disk brightness (density). Our results are in good agreement with numerical models of collisionless disks that evolved to a marginally stable equilibrium state. This suggests that, in most galaxies, the vertical stellar-velocity dispersion, on which the equilibrium-disk thickness depends, is close to a minimum value that ensures disk stability. The thinnest edge-on disks appear to be low-brightness galaxies in which the dark-halo mass far exceeds the stellar-disk mass.  相似文献   

20.
It is now possible to probe stellar populations at large lookback times. The Butcher-Oemler Effect in distant clusters is un-ambiguous evidence for unexpectedly recent evolution of disk galaxies in dense environments, probably through starbursts induced by interactions. Recent applications of the "red envelope" test at z ≲ 1 indicate that some luminous galaxies formed ∼ 10–13 Gyr ago. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号