首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   17篇
地球物理   35篇
地质学   94篇
海洋学   7篇
天文学   42篇
自然地理   16篇
  2022年   1篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   10篇
  2002年   18篇
  2001年   3篇
  2000年   9篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1987年   5篇
  1986年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有212条查询结果,搜索用时 31 毫秒
1.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   
2.
Spencer  John  Buie  Marc  Young  Leslie  Guo  Yanping  Stern  Alan 《Earth, Moon, and Planets》2003,92(1-4):483-491
Development of the New Horizons mission to Pluto and the Kuiper Belt is now fully funded by NASA (Stern and Spencer, this volume). If all goes well, New Horizons will be launched in January 2006, followed by a Jupiter gravity assist in 2007, with Pluto arrival expected in either 2015 or 2016, depending on the launch vehicle chosen. A backup launch date of early 2007, without a Jupiter flyby, would give a Pluto arrival in 2019 or 2020. In either case, a flyby of at least one Kuiper Belt object (KBO) is planned following the Pluto encounter, sometime before the spacecraft reaches a heliocentric distance of 50 AU, in 2021 or 2023 for the 2006 launch, and 2027 or 2029 for the 2007 launch. However, none of the almost 1000 currently-known KBOs will pass close enough to the spacecraft trajectory to be targeted by New Horizons, so the KBO flyby depends on finding a suitable target among the estimated 500,000 KBOs larger than 40 km in diameter. This paper discusses the issues involved in finding one or more KBO targets for New Horizons. The New Horizons team plans its own searches for mission KBOs but will welcome other U.S, or international team who wish to become involved in exchange for mission participation at the KBO.  相似文献   
3.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
4.
5.
6.
 All six Holocene volcanic centers of the Andean Austral Volcanic Zone (AVZ; 49–54°S) have erupted exclusively adakitic andesites and dacites characterized by low Yb and Y concentrations and high Sr/Y ratios, suggesting a source with residual garnet, amphibole and pyroxene, but little or no olivine and plagioclase. Melting of mafic lower crust may be the source for adakites in some arcs, but such a source is inconsistent with the high Mg# of AVZ adakites. Also, the AVZ occurs in a region of relatively thin crust (<35 km) within which plagioclase rather than garnet is stable. The source for AVZ adakites is more likely to be subducted oceanic basalt, recrystallized to garnet-amphibolite or eclogite. Geothermal models indicate that partial melting of the subducted oceanic crust is probable below the Austral Andes due to the slow subduction rate (2 cm/year) and the young age (<24 Ma) of the subducted oceanic lithosphere. Geochemical models for AVZ adakites are also consistent with a large material contribution from subducted oceanic crust (35–90% slab-derived mass), including sediment (up to 4% sediment-derived mass, representing approximately 15% of all sediment subducted). Variable isotopic and trace-element ratios observed for AVZ adakites, which span the range reported for adakites world-wide, require multistage models involving melting of different proportions of subducted basalt and sediment, as well as an important material contribution from both the overlying mantle wedge (10–50% mass contribution) and continental crust (0–30% mass contribution). Andesites from Cook Island volcano, located in the southernmost AVZ (54°S) where subduction is more oblique, have MORB-like Sr, Nd, Pb and O isotopic composition and trace-element ratios. These can be modeled by small degrees (2–4%) of partial melting of eclogitic MORB, yielding a tonalitic parent (intermediate SiO2, CaO/Na2O>1), followed by limited interaction of this melt with the overlying mantle (≥90% MORB melt, ≤10% mantle), but only very little (≤1%) or no participation of either subducted sediment or crust. In contrast, models for the magmatic evolution of Burney (52°S), Reclus (51°S) and northernmost AVZ (49–50°S) andesites and dacites require melting of a mixture of MORB and subducted sediment, followed by interaction of this melt not only with the overlying mantle, but the crust as well. Crustal assimilation and fractional crystallization (AFC) processes and the mass contribution from the crust become more significant northwards in the AVZ as the angle of convergence becomes more orthogonal. Received: 1 March 1995 / Accepted: 13 September 1995  相似文献   
7.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
8.
We present new high-precision CA-ID-TIMS and in situ U–Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15?10 Ma Bruneau–Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10?6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and εHf (ranges of up to 24 ε units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104–106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and εHf) and a combination of Precambrian basement rock (normal δ18O and εHf down to ??60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.  相似文献   
9.
The Hikurangi Margin is a region of oblique subduction with northwest-dipping intermediate depth seismicity extending southwest from the Kermadec system to about 42°S. The current episode of subduction is at least 16–20 Ma old. The plate convergence rate varies along the margin from about 60 mm/a at the south end of the Kermadec Trench to about 45 mm/a at 42°S. The age of the Pacific lithosphere adjacent to the Hikurangi Trench is not known.The margin divides at about latitude 39°S into two quite dissimilar parts. The northern part has experienced andesitic volcanism for about 18 Ma, and back-arc extension in the last 4 Ma that has produced a back-arc basin onshore with high heaflow, thin crust and low upper-mantle seismic velocities. The extension appears to have arisen from a seawards migration of the Hikurangi Trench north of 39°S. Here the plate interface is thought to be currently uncoupled, as geodetic data indicate extension of the fore-arc basin, and historic earthquakes have not exceededM s=7.South of 39°S there is no volcanism and a back-arc basin has been produced by downward flexure of the lithosphere due to strong coupling with the subducting plate. Heatflow in the basin is normal. Evidence for strong coupling comes from historic earthquakes of up to aboutM s=8 and high rates of uplift on the southeast coast of the North Island.The reason for this division of the margin is not known but may be related to an inferred increase, from northeast to southwest, in the buoyancy of the Pacific lithosphere.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号