首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suite of deep‐sea cores were collected along transects up to 100 km across the fore‐arc and back‐arc regions of the predominantly submarine Kermadec arc near Raoul and Macauley islands, southwest Pacific. The cores reveal a macroscopic tephra record extending back >50 ka. This is a significant addition to the dated record of volcanism, previously restricted to fragmented late Holocene records exposed on the two islands. The 27 macroscopic tephra layers display a wide compositional diversity in glass (~50–78 wt% SiO2). Many tephra layers comprise silicic shards with a subordinate mafic shard population. This could arise from magma mingling and may reflect mafic triggering of the silicic eruptions. Broadly, the glass compositions can be distinguished on diverging high‐K and low‐K trends, most likely arising from different source volcanoes. This distinction is also reflected in the tephra records exposed on Raoul (low‐K) and Macauley (high‐K) islands, the likely source areas. Heterogeneous tephra comprising shards of both high‐ and low‐K affinity, silicic and mafic compositions, and more homogeneous tephra with subordinate outlier shard compositions, are best explained by post‐depositional mixing of separate eruption deposits or contemporaneous eruptions. Evidently, the slow sedimentation rates of the calcareous oozes (~101–102 mm ka?1) were insufficient to adequately separate and preserve closely spaced eruption deposits. This exemplifies the difficulty in assessing eruption frequencies and magmatic trends, and erecting a tephrostratigraphy, using geochemical fingerprinting in such environments. Despite these difficulties, the ca. 5.7 ka Sandy Bay Tephra erupted from Macauley Island can be correlated over a distance of >100 km, extending east and west of the island, showing that the mostly submerged volcanoes are capable of wide tephra dispersal. Hence there is potential for developing chronostratigraphies for the southwest Pacific beyond the region covered by the extensive rhyolite marker beds from the Taupo Volcanic Zone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.  相似文献   

3.
4.
Large Plinian eruptions from Hekla volcano, Iceland, produce compositionally zoned tephra used as key markers in tephrochronology. However, spatial variations in chemical composition of a tephra layer may complicate its identification. An example is the 5950–6180 cal a bp Hekla Ö tephra layer, which shows compositional spread from rhyolite, dacite and andesite to basalt. In soil sections north of Hekla, the SiO2 content of the tephra glass reaches 76 wt% in the lowest unit of the Hekla Ö deposit and decreases to 62–63 wt% in the uppermost unit. Intermingled within the whole deposit are basalt tephra grains having 46–47 wt% SiO2. The composition of the basalt glass includes primitive basalt and a more evolved basalt (MgO >6 and <6 wt%, respectively). Together with literature data, the Hekla Ö tephra and the so-called T-Tephra/Hekla-T are most likely from contemporaneous eruptions of different vents on the Hekla volcanic system, forming a single important marker tephra (Hekla ÖT) deposited over 80% of Iceland. Identification is complicated by its spatial compositional heterogeneity, such as systematic decrease in SiO2 content from the east to the west of Hekla volcano. Consequently, an individual tephra layer from a large explosive eruption can have different composition at different locations. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
Studies on distal airfall tephra layers preserved in lake sediments and peats in northern New Zealand have documented the stratigraphic, chronologic, and compositional relationships of 46 eruptives, aged c. 17000–700yr BP, which originated from six North Island volcanic centres: Taupo (9 tephras), Okataina (8), Maroa (1) (rhyolitic); Mayor Island (2) (peralkaline); Tongariro (11), Egmont (15) (andesitic). Sources were distinguished by mineralogy and composition, field relations, and 14C chronology. All known rhyolitic tephra-producing eruptions from Taupo, Okataina, and Maroa volcanoes since c. 17000yr BP are represented, but only a small proportion of the known tephras erupted from Tongariro, Egmont, or Mayor Island volcanoes is recorded. The distal tephras from these latter volcanic centres may thus reflect atypically powerful (or oblique) eruptions, or dispersal by strong winds. An improved record of volcanism for the Tongariro, Egmont, and Mayor Island centres might be obtainable from suitable lakes or bogs more proximal to them.  相似文献   

6.
Several reworked tephra layers in gravity-flow deposits are present in lacustrine core sediments collected from Hotel and Rudy Lakes on King George Island, South Shetland Islands, maritime sub-Antarctica. This study tests the values of tephra for establishing regional tephrochronologies for lakes in ice-covered landscapes in the vicinity of volcanoes. The tephra record is more abundant in a long Hotel Lake core (515 cm long). This study uses volcanic glass samples from five tephra layers of Hotel Lake and from one tephra layer of Rudy Lake. Morphologically, tephras are mixtures of basaltic and pumice shards, both having various degrees of vesicularity. Major element analyses of glass shards reveal that the majority of the glass fragments belong to basic glass (<60 wt% SiO2), compositionally ranging from basalt to low-silica andesite and subalkaline series medium-K tholeiites, probably sourced from Deception Island located 130 km southwest of King George Island. Less than 20% of tephra belongs to silicic glass and occurs in three tephra horizons E of Hotel Lake. However, source volcano(es) for about 10% of basic tephra and silicic tephra are not readily identified from nearby volcanic centers. Except for the studied tephra in Rudy Lake, all tephra samples in Hotel Lake are not ashfall deposits but reworked and redeposited pyroclasts derived from retreating ice sheet, resulting in the occurrence of geochemically equivalent tephra samples in different tephra horizons. The dating of the studied tephra horizons represents the timing of deglaciation rather than that of volcanic eruptions. The result of this study implies that combined with sedimentological information more chemical criterion is necessary to study tephrochronology and regional correlation and to understand paleoenvironmental changes using tephra.  相似文献   

7.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

8.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Hekla volcano is a major producer of large, widespread silicic tephras. About 3000 years ago, the dominant eruption mode shifted from infrequent large (>1 km3) to more frequent moderate (<1 km3) eruptions. In the following two millennia ≥20 explosive silicic-to-intermediate eruptions occurred, and six or more basaltic. Three categories can be identified with dacite/andesite to basaltic andesite in the oldest eruptions through basaltic andesite to basalt in the youngest eruptions. Ten tephra layers of the first category have distinct field characteristics: a pale lower unit and a dark upper unit (two coloured or TC-layers). Colour separation is sharp indicating a stratified magma chamber origin. The lower unit is dominantly andesitic (61–63% SiO2), while the upper unit is basaltic andesite (53–57% SiO2). Volumes of the eight largest TC-layers range from 0.2 to 0.7 km3 as freshly fallen. Radiocarbon and soil accumulation rate dates constrain the TC-layers to between 3000 and 2200 years ago. Two of these (~2890 and ~2920 b2k) are likely to occur overseas. Low SiO2 in the last erupted tephra of the TC-layers is comparable to that of historical Hekla lavas, implying a final effusive phase. The Hekla edifice may, consequently, be younger than 3000 years.  相似文献   

10.
Far-travelled ash layers from explosive volcanic eruptions can provide invaluable marker horizons for dating and correlating regional to global sedimentary archives. Here, we present a new cryptotephra associated with the ~5.9 cal ka bp Towada-Chuseri eruption (To-Cu) in a peat sediment record from northeast China. This tephra exhibits a rhyolitic glass composition that can be distinguished from other widespread tephra layers around the region of Japan and northeast China. Our findings extend the known range of this ash significantly, making it now traceable about 1200 km from its source, Towada volcano, Japan. Notably, this tephra provides an important isochron for synchronising palaeoenvironmental studies during the mid-Holocene period from the western Pacific, central Japan, Japan Sea and northeast China.  相似文献   

11.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

12.
Peralkaline magma evolution and the tephra record in the Ethiopian Rift   总被引:3,自引:3,他引:0  
The 3.119 ± 0.010 Ma Chefe Donsa phreatomagmatic deposits on the shoulder of the Ethiopian Rift mark the northern termination of the Silti-Debre Zeyit Fault Zone, a linear zone of focused extension within the modern Ethiopian Rift. These peralkaline pumice fragments and glass shards span a wide range of glass compositions but have a restricted phenocryst assemblage dominated by unzoned sanidine. Glass shards found within the ash occupy a far more limited compositional range (75–76 wt% SiO2) in comparison with the pumice (64–75 wt% SiO2), which is rarely mingled. Thermodynamic modeling shows that liquids broadly similar to the least evolved glass composition can be achieved with 50–60 % fractionation of moderately crustally contaminated basalt. Inconsistencies between modeled solutions and the observed values of CaO and P2O5 highlight the important role of fluorine in stabilizing fluor-apatite and the limitations of current thermodynamic models largely resulting from the scarce experimental data available for the role of fluorine in igneous phase stability. On the basis of limited feldspar heterogeneity and crystal content of pumice at Chefe Donsa, and the difficulties of extracting small volumes of Si-rich melt in classical fractional crystallization models, we suggest a two-step polybaric process: (1) basaltic magma ponds at mid-upper-crustal depths and fractionates to form a crystal/magma mush. Once this mush has reached 50–60 % crystallinity, the interstitial liquid may be extracted from the rigid crystal framework. The trachytic magma extracted at this step is equivalent to the most primitive pumice analyzed at Chefe Donsa. (2) The extracted trachytic liquid will rise and continue to crystallize, generating a second mush zone from which rhyolite liquids may be extracted. Some of the compositional range observed in the Chefe Donsa deposits may result from the fresh intrusion of trachyte magma, which may also provide an eruption trigger. This model may have wider application in understanding the origin of the Daly Gap in Ethiopian magmas—intermediate liquids may not be extracted from crystal-liquid mushes due to insufficient crystallization to yield a rigid framework. The wide range of glass compositions characteristic of the proximal Chefe Donsa deposits is not recorded in temporally equivalent tephra deposits located in regional depocenters. Our results show that glass shards, which represent the material most likely transported to distal depocenters, occupy a limited compositional range at high SiO2 values and overlap some distal tephra deposits. These results suggest that distal tephra deposits may not faithfully record the potentially wide range in magma compositions present in a magmatic system just prior to eruption and that robust distal–proximal tephra correlations must include a careful analysis of the full range of materials in the proximal deposit.  相似文献   

13.
Olivine-hosted glass inclusions were investigated from tephra samples erupted at Parícutin volcano on four different dates: May 26 and August 1, 1943; January 23, 1945; and March 31, 1948. These dates span the first two thirds of the 9 year eruption, during which time the tephra/lava mass-eruption rate fell dramatically. They also span the strong whole-rock compositional shift of 1947, attributed to the increased importance of crustal contamination. Nine of the 26 analyzed glass inclusions have lower SiO2 contents than any previously analyzed Parícutin lava sample, ranging to below 53 wt%. These silica-poor glasses are found in olivines erupted in 1943 and 1945, and provide evidence for melts that are parental to the main Parícutin lava suite. Total water contents in the glass inclusions measured by Fourier transform infrared (FTIR) spectroscopy vary considerably in all individual samples, with a total range of 1.8-4.0 wt%. Total water contents are not correlated with SiO2 of the glass, Mg# of the adjacent host olivine, or eruption date. Only two glass inclusions have carbonate contents (248 and 296 ppm CO2) above the FTIR detection limit of ~50 ppm CO2; importantly, these inclusions also have the highest total water contents and among the highest SO3t values. These two inclusions were trapped at minimum depths of 9.0-9.6 km beneath the volcano. Thus, early degassing likely stripped most carbon from Parícutin melts at mid-crustal levels. Other glass inclusions yield minimum entrapment depths of 1.3-5.1 km based on water solubility limits. Total sulfur (0.30 to 0.01 wt% SO3) declines as SiO2 contents increase from 52.7 to 60.5 wt%. This trend and the wide range of glass inclusion total water contents are interpreted to reflect degassing accompanied by fractional crystallization and assimilation at upper crustal levels.  相似文献   

14.
Tephra shards for electron probe microanalysis are most efficiently extracted from peat using acid digestion, which removes organic material that hinders density separation methods. However, strong acids are known to alter glass chemical compositions, and several studies have examined how acid digestion affects rhyolitic volcanic glass. The focus on rhyolitic tephra in these studies leaves considerable uncertainty, as the dissolution rates of natural glasses (including tephra) are determined by the chemical composition and surface area/volume ratio, both of which vary in tephra deposits. Here, we use duplicate samples of basaltic, trachydacitic and rhyolitic tephra to examine physical and geochemical alteration following acid digestion. Scanning electron microscope imagery reveals no discernible degradation of glass surfaces, and electron probe microanalysis results from duplicate samples are statistically indistinguishable. These findings suggest the acid digestion protocol for organic peats does not significantly alter glass geochemistry regardless of shard morphologies or geochemical compositions.  相似文献   

15.
Due to a lack of visible tephras in the Dead Sea record, this unique palaeoenvironmental archive is largely unconnected to the well-established Mediterranean tephrostratigraphy. Here we present first results of the ongoing search for cryptotephras in the International Continental Drilling Program (ICDP) sediment core from the deep Dead Sea basin. This study focusses on the Lateglacial (~15–11.4 cal. ka BP), when Lake Lisan – the precursor of the Dead Sea – shrank from its glacial highstand to the Holocene low levels. We developed a glass shard separation protocol and counting procedure that is adapted to the extreme salinity and sediment recycling of the Dead Sea. Cryptotephra is abundant in the Dead Sea record (up to ~100 shards cm-3), but often glasses are physically and/or chemically altered. Six glass samples from five tephra horizons reveal a heterogeneous geochemical composition, with mainly rhyolitic and some trachytic glasses potentially sourced from Italian, Aegean and Anatolian volcanoes. Most shards likely originate from the eastern Anatolian volcanic province and can be correlated using major element analyses with tephra deposits from swarm eruptions of the Süphan Volcano ~13 ka BP and with ashes from Nemrut Volcano, presumably the Lake Van V-16 volcanic layer at ~13.8 ka BP. In addition to glasses that match the TM-10-1 from Lago Grande di Monticchio (15 820±790 cal. a BP) tentatively correlated with the St. Angelo Tuff of Ischia, we further identified a cryptotephra with glass analyses which are chemically identical with those of the PhT1 tephra in the Philippon peat record (13.9–10.5 ka BP), and also a compositional match for the glass analyses of the Santorini Cape Riva Tephra (Y-2 marine tephra, 22 024±642 cal. a BP). These first results demonstrate the great potential of cryptotephrochronology in the Dead Sea record for improving its chronology and connecting the Levantine region to the Mediterranean tephra framework.  相似文献   

16.
Stratigraphically important Quaternary rhyolitic tephra deposits that erupted from the Okataina and Taupo volcanic centers in New Zealand can be geochemically identified using the FeO and MgO contents of their biotite phenocrysts. The FeO/MgO ratio in biotite does not correlate with FeO/MgO in the coexisting glass phase so that tephra beds with similar glass compositions can be discriminated by their different biotite compositions. Some individual tephra deposits display sequential changes in biotite composition that allow separate phases of the eruption to be identified, greatly increasing the potential precision for correlation. In addition, devitrified lavas that are unsuitable for glass analysis can be correlated to coeval tephra deposits by their biotite compositions. Biotite is common in high-K2O (>4 wt%) tephra beds and is widely dispersed in ash plumes because of its platy form, thus making it important in correlation studies.  相似文献   

17.
The tephrochronology of Iceland and the North Atlantic region is reviewed in order to construct a unified framework for the last 400 kyr BP. Nearly all of the tephra layers described are also characterised geochemically. A number of new tephra layers are analysed for the first time for their geochemical signature and a number of pre‐Holocene tephra layers have been given an informal denotation. The tephrostratigraphy of Ash Zone II is highlighted. Where possible the rhyolitic tephra layers found outside Iceland have been correlated to known Icelandic tephra layers or to the volcanic source area. The application of tephra fallout in various depositional environments is described and discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A cryptotephra layer from the eruption of Hekla in 1947 has recently been discovered in Irish peatlands. This tephra layer represents the most recent deposition of volcanic ash in the UK prior to the eruption of Eyjafjallajökull in 2010. Here we examine the concentration and geochemistry of the Hekla 1947 tephra in 14 peat profiles from across Northern Ireland. Electron probe microanalysis of individual tephra shards (n = 91) reveals that the tephra is of dacitic–andesitic geochemistry and is highly similar to the Hekla 1510 tephra, although spheroidal carbonaceous particle profiles can be used for successful discrimination of the two layers. The highest concentrations of Hekla 1947 are found in western sites, probably reflecting the pathway of the ash fall event due to the prevailing wind direction. Comparable tephra concentrations from two cores (1 km apart) from a single bog and from nearby sites may suggest that tephra shard concentrations in peat profiles reflect ash fallout densities across a specific region, rather than site‐specific factors associated with peatlands. This paper firmly establishes Hekla 1947 as a useful chronostratigraphic marker for the twentieth century, although within a restricted zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Detailed tephrochronologies are built to underpin probabilistic volcanic hazard forecasting, and to understand the dynamics and history of diverse geomorphic, climatic, soil-forming and environmental processes. Complicating factors include highly variable tephra distribution over time; difficulty in correlating tephras from site to site based on physical and chemical properties; and uncertain age determinations. Multiple sites permit construction of more accurate composite tephra records, but correctly merging individual site records by recognizing common events and site-specific gaps is complex. We present an automated procedure for matching tephra sequences between multiple deposition sites using stochastic local optimization techniques. If individual tephra age determinations are not significantly different between sites, they are matched and a more precise age is assigned. Known stratigraphy and mineralogical or geochemical compositions are used to constrain tephra matches. We apply this method to match tephra records from five long sediment cores (≤ 75 cal ka BP) in Auckland, New Zealand. Sediments at these sites preserve basaltic tephras from local eruptions of the Auckland Volcanic Field as well as distal rhyolitic and andesitic tephras from Okataina, Taupo, Egmont, Tongariro, and Tuhua (Mayor Island) volcanic centers. The new correlated record compiled is statistically more likely than previously published arrangements from this area.  相似文献   

20.
Thirty-two tephra layers were identified in the time-interval 313–366 ka (Marine Isotope Stages 9–10) of the Quaternary lacustrine succession of the Fucino Basin, central Italy. Twenty-seven of these tephra layers yielded suitable geochemical material to explore their volcanic origins. Investigations also included the acquisition of geochemical data of some relevant, chronologically compatible proximal units from Italian volcanoes. The record contains tephra from some well-known eruptions and eruptive sequences of Roman and Roccamonfina volcanoes, such as the Magliano Romano Plinian Fall, the Orvieto–Bagnoregio Ignimbrite, the Lower White Trachytic Tuff and the Brown Leucitic Tuff. In addition, the record documents eruptions currently undescribed in proximal (i.e. near-vent) sections, suggesting a more complex history of the major eruptions of the Colli Albani, Sabatini, Vulsini and Roccamonfina volcanoes between 313 and 366 ka. Six of the investigated tephra layers were directly dated by single-crystal-fusion 40Ar/39Ar dating, providing the basis for a Bayesian age–depth model and a reassessment of the chronologies for both already known and dated eruptive units and for so far undated eruptions. The results provide a significant contribution for improving knowledge on the peri-Tyrrhenian explosive activity as well as for extending the Mediterranean tephrostratigraphical framework, which was previously based on limited proximal and distal archives for that time interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号