首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
《Chemical Geology》2002,182(2-4):265-273
Si adsorption onto Bacillus subtilis and Fe and Al oxide coated cells of B. subtilis was measured both as a function of pH and of bacterial concentration in suspension in order to gain insight into the mechanism of association between silica and silicate precipitates and bacterial cell walls. All experiments were conducted in undersaturated solutions with respect to silicate mineral phases in order to isolate the important adsorption reactions from precipitation kinetics effects of bacterial surfaces. The experimental results indicate that there is little association between aqueous Si and the bacterial surface, even under low pH conditions where most of the organic acid functional groups that are present on the bacterial surface are fully protonated and neutrally charged. Conversely, Fe and Al oxide coated bacteria, and Fe oxide precipitates only, all bind significant concentrations of aqueous Si over a wide range of pH conditions. Our results are consistent with those of Konhauser et al. [Geology 21 (1993) 1103; Environ. Microbiol. 60 (1994) 49] and Konhauser and Urrutia [Chem. Geol. 161 (1999) 399] in that they suggest that the association between silicate minerals and bacterial surfaces is not caused by direct Si–bacteria interactions. Rather, the association is most likely caused by the adsorption of Si onto Fe and Al oxides which are electrostatically bound to the bacterial surface. Therefore, the role of bacteria in silica and silicate mineralization is to concentrate Fe and Al through adsorption and/or precipitation reactions. Bacteria serve as bases, or perhaps templates, for Fe and Al oxide precipitation, and it is these oxide mineral surfaces (and perhaps other metal oxide surfaces as well) that are reactive with aqueous Si, forming surface complexes that are the precursors to the formation of silica and silicate minerals.  相似文献   

2.
Calcite is generally associated with apatite minerals in phosphate deposits. To explore the possibility of separating these minerals by a soap flotation technique, their electrokinetic properties and flotation behaviour were studied in the presence of sodium oleate.Microelectrophoresis data indicate oleate adsorption on these minerals, and from Hallimond-tube flotation tests it has been noted that in a controlled pH environment and for a certain sodium oleate concentration range, separation of these minerals is possible.The study of apatite/calcite-sodium metasilicate-sodium oleate systems indicates the preferential adsorption of silicate at the calcite surface. This suggests the potential use of sodium metasilicate as the modifying agent for the separation of apatite from calcite by depressing calcite when using sodium oleate as collector.  相似文献   

3.
Clay minerals were reacted with silica-spiked solutions of unbuffered distilled water; water buffered at pH 5.5, 8 and 10; alkali chloride solutions; natural and artificial sea water to assess the influence of pH, silica and cation activities. The data are plotted as silica produced by dissolution or sorption of silica by clay surface as a function of initial silica concentration at a given pH and solution composition. This allows the determination of the dissolved silica value at which the clay mineral surface neither dissolves nor sorbs silica. The values of the various activities in different solutions are used to infer the phase equilibria between solution, clay mineral and the surface phase produced either by dissolution or sorption. Most intensively investigated were sorption reactions of kaolinite in sea water and other ionic solutions to form silica-rich, cation-rich surface phases in cationic solutions and silica-rich phases in cation-free solutions.Inferred equilibrium constants imply that silicate reconstitution is doubtful as a mechanism for partial control of silica and cation composition of sea water but is reasonable in silica-rich interstitial waters.  相似文献   

4.
We used of a set of mechanistic adsorption models (1-pK TPM, ion exchange and Nica-Donnan) within the framework of the component additive (CA) approach in an attempt to determine the effect of repeated massive application of inorganic P fertilizer on the processes and mechanisms controlling the concentration of dissolved inorganic phosphorus (DIP) in soils. We studied the surface layer of a Luvisol with markedly different total concentrations of inorganic P as the result of different P fertilizer history (i.e. massive or no application for 40 years). Soil pH was made to vary from acid to alkaline. Soil solutions were extracted with water and CaCl2 (0.01 M). The occurrence of montmorillonite led us to determine the binding properties of P and Ca ions for this clay mineral.Satisfactory results were obtained using generic values for model parameters and soil-specific ones, which were either determined directly by measurements or estimated from the literature. We showed that adsorption largely controlled the variations of DIP concentration and that, because of kinetic constrains, only little Ca-phosphates may be precipitated under alkaline conditions, particularly in the P fertilized treatment. The mineral-P pool initially present in both P treatments did not dissolve significantly during the course of the experiments. The adsorption of Ca ions onto soil minerals also promoted adsorption of P ions through electrostatic interactions. The intensity of the mechanism was high under neutral to alkaline conditions. Changes in DIP concentration as a function of these environmental variables can be related to changes in the contribution of the various soil minerals to P adsorption. The extra P adsorbed in the fertilized treatment compared with the control treatment was mainly adsorbed onto illite. This clay mineral was the major P-fixing constituent from neutral to alkaline pH conditions, because the repulsion interactions between deprotonated hydroxyl surface sites and P ions were sufficiently counterbalanced by Ca ions. The drastic increase of DIP observed at acid pH was due to the effect of the lower concentration of surface sites of Fe oxides and kaolinite.In addition to confirming the validity of our approach to model DIP concentrations in soils, the present investigation showed that adsorption was the predominant geochemical process even in the P fertilized soil, and that Ca ions can have an important promoting effect on P adsorption. However the influence of the dissolution of the mineral-P pool under field conditions remained questionable.  相似文献   

5.
The complex mineral assemblages of silica and Fe minerals play a significant role in the transport of compounds in soils and sediments. Five coated sands including Goethite, Lepidocrocite, Ferrihydrite, Hematite and Magnetite were synthesized by a heterogeneous suspension method and characterized by FTIR spectroscopy, XRD, BET surface area and chemical analyses. The synthesis results showed that the degree of coating (mg Fe/g sand) varied with the mineralogy of Fe coating phases, which may have different affinities towards the silica surface. Batch experiments were conducted with two compounds (2,5-dihydroxybenzoic acid and 1-hydroxy-2-naphthoic acid) to quantify the contributions to adsorption from different oxide coatings and compare adsorption characteristics of selected organic acids. Sorption of these compounds to coated sands was examined versus a wide range of conditions (time, pH, ionic strength and sorbate concentration). Because of the attachment of Fe oxide, the coated sand had higher specific surface area, involving a better adsorption efficiency of organic compounds. Mineral surface charge and pH proved to be important for the adsorption of these compounds. The batch results indicated that the degree of coating was the most significant factor enhancing the sorption of aromatic compounds on the surface of sand and the mineralogy of the Fe phase was of less importance.  相似文献   

6.
微生物对硅酸盐矿物风化作用研究进展   总被引:6,自引:1,他引:6  
微生物对硅酸盐矿物风化的影响研究取得了一系列重要进展。在贫营养环境中,微生物风化硅酸盐矿物获取营养物质,加速了硅酸盐矿物的风化;由于微生物的作用,矿物的风化会不遵循正常的矿物化学风化序列,表现出稳定矿物比不稳定矿物更易风化的特征。微生物风化硅酸盐矿物时会在硅酸盐矿物表面留下痕迹,即富集或转移相应的元素和矿物,而且还能改变硅酸盐矿物的化学组成和结构。微生物的上述行为受营养基质含量、有机酸、生物膜、胞外聚合物以及氧化还原作用的影响。  相似文献   

7.
The synthesis of illite mixed-layer minerals at surface conditions is possible through precipitation of Al hydroxides from Si-, Mg- and K-containing solutions. It has been shown that amorphous hydroxides of Al, Fe, etc. are capable of coprecipitating silica even from very dilute solutions. By aging of these X-ray amorphous hydroxide—silica precipitates under certain conditions, clay minerals can be synthesized at low temperatures. The presence of Mg particularly favors the formation of three-layer clay minerals. Mg-rich Al hydroxide—silica precipitates permit formation of tri- and di-octahedral smectite, illite and chlorite. The formation of three-layer clay minerals is only possible when the precipitates contain at least 6% MgO. The precipitates stay amorphous if the Mg content is lower. The adsorption of Mg and K on the hydroxide—silica precipitate controls the illite or montmorillonite portion in the mixture of the three-layer silicates. There is a competition for K and Mg adsorption on the hydroxide—silica precipitates. Higher K concentration inhibits the three-layer mineral formation through the lowering of the Mg content in the precipitates. Illite mineral formation is favored under certain K/Mg ratios. Higher NaCl contents do not favor the three-layer mineral formation.The enrichment of Mg and K in the precipitates is not as large as the enrichment of Si in the hydroxides. This means that the illite mineral formation is only possible from solutions with a high-salt content like seawater.  相似文献   

8.
为探讨天然黏土矿物及有机质对纳米乳化油在多孔介质中迁移滞留的影响,本文选取高岭石和蒙脱石这两种黏土矿物以及有机质的典型代表腐殖酸,开展了单一矿物、有机质及有机矿质复合物对纳米乳化油的吸持批实验研究,并运用比表面积全分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等技术手段探讨了吸持机理。实验结果表明,介质对纳米乳化油的吸持均符合Freundlich模型;单一矿物及腐殖酸对纳米乳化油的吸持能力表现为:蒙脱石>腐殖酸>高岭石,有机矿质复合样品的吸持能力表现为:蒙脱石-腐殖酸>高岭石-腐殖酸,且均大于其对应的单一样品,出现了“1+1>2”的现象,表明介质组成越复杂,对纳米乳化油的吸持滞留程度越大。进一步分析证实,纳米乳化油主要通过氢键和疏水作用吸持在矿物和腐殖酸表面,表面结构性质是高岭石和蒙脱石吸持过程中的主导因素,因此蒙脱石具有更强的吸持能力,而腐殖酸的吸持主要通过颗粒间聚集作用来实现;对于复合样品,吸持主要通过氢键、配体交换和疏水作用结合来实现。腐殖酸与矿物的复合会增加吸持位点并且增强矿物表面疏水性,从而促进吸持。腐殖酸与纳米乳化油的共吸...  相似文献   

9.
The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution   总被引:11,自引:0,他引:11  
Acidithiobacillus ferrooxidans are commonly present in acid mine drainage (AMD). A. ferrooxidans derive metabolic energy from oxidation of Fe2+ present in natural acid solutions and also may be able to utilize Fe2+ released by dissolution of silicate minerals during acid neutralization reactions. Natural and synthetic fayalites were reacted in solutions with initial pH values of 2.0, 3.0 and 4.0 in the presence of A. ferrooxidans and in abiotic solutions in order to determine whether these chemolithotrophic bacteria can be sustained by acid-promoted fayalite dissolution and to measure the impact of their metabolism on acid neutralization rates. The production of almost the maximum Fe3+ from the available Fe in solution in microbial experiments (compared to no production of Fe3+ in abiotic controls) confirms A. ferrooxidans metabolism. Furthermore, cell division was detected and the total cell numbers increased over the duration of experiments. Thus, over the pH range 2–4, fayalite dissolution can sustain growth of A. ferrooxidans. However, ferric iron released by A. ferrooxidans metabolism dramatically inhibited dissolution rates by 50–98% compared to the abiotic controls.

Two sets of abiotic experiments were conducted to determine why microbial iron oxidation suppressed fayalite dissolution. Firstly, fayalite was dissolved at pH 2 in fully oxygenated and anoxic solutions. No significant difference was observed between rates in these experiments, as expected, due to extremely slow inorganic ferrous iron oxidation rates at pH 2. Experiments were also carried out to determine the effects of the concentrations of Fe2+, Mg2+ and Fe3+ on fayalite dissolution. Neither Fe2+ nor Mg2+ had an effect on the dissolution reaction. However, Fe3+, in the solution, inhibited both silica and iron release in the control, very similar to the biologically mediated fayalite dissolution reaction. Because ferric iron produced in microbial experiments was partitioned into nanocrystalline goethite (with very low Si) that was loosely associated with fayalite surfaces or coated the A. ferrooxidans cells, the decreased rates of accumulation of Fe and Si in solution cannot be attributed to diffusion inhibition by goethite or to precipitation of Fe–Si-rich minerals. The magnitude of the effect of Fe3+ addition (or enzymatic iron oxidation) on fayalite dissolution rates, especially at low extents of fayalite reaction, is most consistent with suppression of dissolution by interaction between Fe3+ and surface sites. These results suggest that microorganisms can significantly reduce the rate at which silicate hydrolysis reactions can neutralize acidic solutions in the environment.  相似文献   


10.
The short term (2–40 days) dissolution of enstatite, diopside, and tremolite in aqueous solution at low temperatures (20–60°C) and pH 1–6 has been studied in the laboratory by means of chemical analyses of reacting solutions for Ca2+, Mg2+, and Si(OH)4 and by the use of X-ray photoelectron spectroscopy (XPS) for detecting changes in surface chemistry of the minerals. All three minerals were found to release silica at a constant rate (linear kinetics) providing that ultrafine particles, produced by grinding, were removed initially by HF treatment. All three also underwent incongruent dissolution with preferential release of Ca and/or Mg relative to Si from their outermost surfaces. The preferential release of Ca, but not Mg for diopside at pH 6 was found by both XPS and solution chemistry verifying the theoretical prediction of greater mobility of cations located in M2 structural sites. Loss mainly from M2 sites also explains the degree of preferential loss of Mg from enstatite at pH 6; similar structural arguments apply to the loss of Ca and Mg from the surface of tremolite. In the case of diopside and tremolite initial incongruency was followed by essentially congruent cation-plus-silica dissolution indicating rapid formation of a constant-thickness, cation-depleted surface layer. Cation depletion at elevated temperature and low pH (~ 1) for enstatite and diopside was much greater than at low temperature and neutral pH, and continued reaction resulted in the formation of a surface precipitate of pure silica as indicated by solubility calculations, XPS analyses, and scanning electron microscopy.From XPS results at pH 6, model calculations indicate a cation-depleted altered surface layer of only a few atoms thickness in all three minerals. Also, lack of shifts in XPS peak energies for Si, Ca, and Mg, along with undersaturation of solutions with respect to all known Mg and Ca silicate minerals, suggest that cation depletion results from the substitution of hydrogen ion for Ca2+ and/or Mg2+ in a modified silicate structure and not from the precipitation of a new, radically different surface phase. These results, combined with findings of high activation energies for dissolution, a non-linear dependence on aH+ for silica release from enstatite and diopside, and the occurrence of etch pitting, all point to surface chemical reaction and not bulk diffusion (either in solution or through altered surface layers) as the rate controlling mechanism of iron-free pyroxene and amphibole dissolution at earth surface temperatures.  相似文献   

11.
Natural polysaccharides such as starch, dextrin, guar gum, cellulose and their derivatives are promising non-toxic organic depressants. Although generally perceived as non-selective, these polymers have found use in commercial processes or have been tested in laboratories in practically all flotation systems involving every type of minerals. In this communication, the adsorption mechanisms of natural polysaccharides are reviewed, with the objective of promoting the wider applications of the polymers. While it seems generally accepted that natural polysaccharides interact with minerals via surface metal-hydroxylated species, an acid/base interaction model between the natural polysaccharides and mineral surfaces is proposed to explain many observed adsorption and flotation phenomena.  相似文献   

12.
对硅酸盐中非沸石类矿物进行的晶体结构特征分析发现,某些链层状硅酸盐矿物(如坡缕石和海泡石)、钛硅酸盐中的硅钛铌钠石、硅钛铌钠矿、钙霞石、方钠石等,以及锰、锆、钒、钇硅酸盐矿物中的水硅钡锰石、堇青石、水钠锆石、水硅钒钙石等矿物中都存在有孔道结构,其孔道直径为0.25~1.0 nm。本文综述了这些孔道结构矿物吸附和交换有害重金属离子、催化降解有机污染物的环境功能和属性。  相似文献   

13.
文章根据高岭土中含铁矿物的浮选试验研究,采用胺类与皂化油酸表面活性剂组合作为高岭土中含铁矿物的捕收剂。高岭土中铁的赋存状态表明,采用分段阳离子/阴离子捕收剂组合试剂,当pH=8~10时,十八胺乳化液以静电力吸附形式捕收含铁硅酸盐;当pH=5~7时,皂化油酸和少量十二烷基磺酸钠通过表面活化反应捕收氧化铁矿,使北海高岭土精矿自然白度达到85%~86%,煅烧白度(1 200℃)达到88%~89%。  相似文献   

14.
The maximum flotation response for three naturally occurring calcium minerals, apatite, calcite and fluorite with sodium oleate collector correlated directly with the minimum interfacial tension of the air/solution interface. For fluorite and apatite the minimum surface tension occurred about the mid-pH region and was attributed to the formation of pre-micellar associated species in solution. In the case of calcite the minimum was observed at high pH since the presence of high concentrations of calcium ions in solution appeared to reduce the concentration of amphililic species in the low and mid-pH regions.Microelectrophoresis data demonstrated that the three minerals acquired a negative charge in sodium oleate solution, resulting from adsorption of oleate species on the mineral surfaces.The flotation behaviour of the systems were shown to be related to the species distribution diagrams suggesting that the role of the acid soap dimer, soap dimer, molecular and lattice species could make a significant contribution to the character and composition of the interfacial films.High flotation response was explained by strong adhesion between the hydrophobic particle and bubble. It was suggested that the reduction in surface tension may not be the major factor contributing to the flotation efficiency but indicated the presence of associated surfactant species in solution which could also synergistically adsorb at the solid/liquid interface, increasing the hydrophobic character of the mineral surface. This would maximize the magnitude of the contact angle and hence the strength of the adhesion between particle and bubble. This adsorption behaviour is not in general agreement with conventionally non-hydrolyzable collector theory which is usually based on electrostatic models.  相似文献   

15.
This work reports on a concerted study of diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii= TW, Skeletonema costatum= SC) and two freshwater periphytic species (Achnanthidium minutissimum= AMIN, Navicula minima= NMIN). Proton surface adsorption was measured at 25°C, pH of 3 to 11 and ionic strength of 0.001 to 1.0 M via potentiometric titration using a limited residence time reactor. Electrophoretic mobility of living cells and their frustules was measured as a function of pH and ionic strength. Information on the chemical composition and molecular structure of diatoms surfaces was obtained using FT-IR (in situ attenuated total reflectance) and X-ray Photoelectron Spectroscopy (XPS). The surface area of living cells and their frustules in aqueous solutions was quantified using Small Angle X-ray Scattering Spectroscopy (SAXS).These observations allowed us to identify the nature and to determine the concentration of the major surface functional groups (carboxyl, amine and silanol) responsible for the amphoteric behavior of cell surfaces in aqueous solutions. Taking into account the relative proportion of surface sites inferred from XPS and FT-IR measurements, a surface complexation model of diatom-solution interfaces was generated on the basis of surface titration results. The cell-normalized ratios of the three major surface sites {>COOH}: {>NH3}: {>SiOH} are 1:1:0.1, 1:10:0, 1:1:0.4 and 1:1:0.3 for TW, SC, AMIN and NMIN, respectively. The total amount of proton/hydroxyl active surface sites for investigated species ranges from 1 (NMIN) to 9 (SC) mmol/g dry weight. Normalization of these site densities to the area of siliceous skeleton yields values between 0.3 (NMIN) and 0.9 mmol/m2 (SC) which are an order of magnitude higher than corresponding values for organic-free frustules or amorphous silica. This suggests that the amphoteric properties and possibly the affinity for metal adsorption of diatom cultures are essentially controlled by the 3-D organic layers covering the silica frustule.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):2971-2987
Many sediment and soil systems have become significantly contaminated with cadmium, and earth scientists are now required to make increasingly accurate predictions of the risks that this contamination poses. This necessitates an improved understanding of the processes that control the mobility and bioavailability of cadmium in the environment. With this in mind, we have studied the composition and structure of aqueous cadmium sorption complexes on the iron oxyhydroxide minerals goethite (α-FeOOH), lepidocrocite (γ-FeOOH), akaganeite (β-FeOOH), and schwertmannite (Fe8O8(OH)6SO4) using extended X-ray adsorption fine structure spectroscopy. The results show that adsorption to all of the studied minerals occurs via inner sphere adsorption over a wide range of pH and cadmium concentrations. The bonding mechanism varies between minerals and appears to be governed by the availability of different types of adsorption site at the mineral surface. The geometry and relative stability of cadmium adsorption complexes on the goethite surface was predicted with ab initio quantum mechanical modelling. The modelling results, used in combination with the extended X-ray adsorption fine structure data, allow an unambiguous determination of the mechanism by which cadmium bonds to goethite.Cadmium adsorbs to goethite by the formation of bidentate surface complexes at corner sharing sites on the predominant (110) crystallographic surface. There is no evidence for significant cadmium adsorption to goethite at the supposedly more reactive edge sharing sites. This is probably because the edge sharing sites are only available on the (021) crystallographic surface, which comprises just ∼2% of the total mineral surface area. Conversely, cadmium adsorption on lepidocrocite occurs predominately by the formation of surface complexes at bi- and/or tridentate edge sharing sites. We explain the difference in extended X-ray adsorption fine structure results for cadmium adsorption on goethite and lepidocrocite by the greater availability of reactive edge sharing sites on lepidocrocite than on goethite. The structures of cadmium adsorption complexes on goethite and lepidocrocite appear to be unaffected by changes in pH and surface loading. There is no support for cadmium sorption to any of the studied minerals via the formation of an ordered precipitate, even at high pH and high cadmium concentration. Cadmium adsorption on akaganeite and schwertmannite also occurs via inner sphere bonding, but the mechanism(s) by which this occurs remains ambiguous.  相似文献   

17.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   

18.
Surface water samples were collected from Langtang Lirung glacier outlet point to the Narayani river system in central Nepal in order to investigate the role of elevation in the variation of chemistry along the drainage networks. The chemistry of Langtang–Narayani river system was dominated by sulfide oxidation coupled with carbonate dissolution and weathering of silicate minerals. Calcium and magnesium concentrations were relatively higher than other cations and the sum of both species strongly correlated with alkalinity, supporting the dissolution of carbonate and dolomite as the dominant source for these ions. Aluminosilicate minerals primarily as albite and anorthite appeared as dominant silicate minerals within the drainage basin. Bisiallitization was the dominant type of weathering within the entire drainage system. Hydrogen ion concentration was lower in the low elevation sites than in high elevation sites reflecting the more consumption of carbon dioxide in the low elevation sites due to enhanced chemical weathering rates. Furthermore, major solutes like sum of base cations, silicon as well as alkalinity increased in concentration in the lower elevation sites. All regulating factors appeared to be directly related to elevation and hence elevation appeared to be the prime factor for the variation in chemical species along the Langtang–Narayani river system. Toshiyuki Masuzawa: deceased.  相似文献   

19.
不同有机酸对矿物溶解的动力学实验研究   总被引:5,自引:0,他引:5  
陈传平  固旭  周苏闽  刘建平 《地质学报》2008,82(7):1007-2008-01-30
用石英、微斜长石和方解石混合颗粒模拟碎屑组分分别与不同有机酸水溶液进行溶蚀实验,以比较储集层内不同矿物在含低分子量有机酸地层水中溶解的速率,并试图探讨矿物溶蚀的微观机理。结果表明:①所有矿物颗粒都发生了不同程度的溶解,表现为颗粒失重,溶液中SiO2和金属阳离子含量增加,pH值上升。②优先溶解的是方解石,其次是硅酸盐矿物。③温度增加,硅酸盐矿物在水中的溶解度明显增加,而方解石的溶解度基本不变。④由于不同有机酸与二氧化硅和金属阳离子生成的络合物稳定性不同,因此,在不同有机酸水溶液中,矿物的溶蚀速率有较大差别。多官能团有机酸的水溶液中,不同矿物有更大的溶解;但在含有丰富Ca2+的草酸水溶液中,由于矿物颗粒表面难溶草酸钙的沉淀,方解石的溶解变得更加困难。⑤多官能团有机酸与SiO2形成的多环螯合物由于完全取代了硅氧四面体的氧原子,在水中具有高度稳定性,可能有助于(铝)硅酸盐的溶蚀和硅元素的迁移  相似文献   

20.
Previous research has shown that the flotation of soluble salt is determined by interfacial water structure, thermal stability, and viscosity. These salts include alkali halide and alkali oxyanion salts. Of particular interest are the carbonate salts such as those associated with the great trona deposit of the Green River basin in Wyoming. In this study, we investigated the adsorption of carbonate and bicarbonate salts at the air–brine interface and correlated the adsorption behavior with water structure. Specifically, the equilibrium and dynamic surface tensions of sodium carbonate and sodium bicarbonate salts have been measured as a function of the salt concentration up to saturation and compared with the model prediction using the Gibbs–Langmuir adsorption theory. The results show that the negative adsorption of sodium carbonate leads to a significant increase in surface tension of the brine solution. For sodium bicarbonate, both the negative adsorption and the increase in surface tension are significantly lower when compared with the sodium carbonate case. The negative adsorption is correlated with the water structure making/breaking character of carbonate and bicarbonate solutions. In particular, sodium ions are significantly more hydrated than carbonate and bicarbonate ions, and, therefore, tend to be excluded from the air–brine interface. On the other hand, carbonate and bicarbonate ions are accommodated at the air–brine interface. In any event, the balance between sodium exclusion and carbonate/bicarbonate accommodation results in an increase in the surface tension of these solutions with an increase in salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号