首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bottom-mounted instrumental tripod was deployed in the tidally energetic Zhujiang (Pearl River) Estuary to examine the contrasting properties of the bottom boundary layer (BBL) flows between estuarine and tide-affected river systems. Three aspects of the BBL flows were investigated to understand the mechanism of the turbulence responses to the large-scale ambient forcing: the flow structures (profile, anisotropy, and spectra), shearing strains and stresses, and the balance of turbulent kinetic energy (TKE). Single log-law profiles and turbulence anisotropy predominated in the two systems, but the non-log regime and stronger anisotropy occurred more frequently at the slack tide in the estuary. The ADV-based turbulence intensities and shearing strains both exceeded their low-frequency counterparts (frictional velocities and mean shears) derived from the logarithmic law. On the contrary, the ADV-based Reynolds stresses were smaller than the log profile-derived bottom stresses, so the hypothesis of a constant stress layer cannot be well satisfied, especially in the river. The bandwidth of the inertial subrange in the river was of one decade larger than in the estuary. The balance between shear production and viscous dissipation was better achieved in the straight river. This first-order balance was significantly broken in the estuary and in the meandering river, by non-shear production/dissipation due to wave-induced fluctuations or salinity/sediment stratification. All these disparities between two systems in turbulence properties are essentially controlled by the anisotropy induced by the large-scale processes such as secondary currents, density stratification. In conclusion, the acceleration of unsteady flows determines the profile structure of the BBL flow, and turbulence anisotropy results in the invalidation of the phenomenological relations such as the constant stress hypothesis and the first-order TKE balance.  相似文献   

2.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:3,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

3.
A simple kε turbulence closure is introduced which has no stability functions but instead a Richardson number-dependent turbulent Prandtl number. Its free parameters are determined in a comparison with microstructure observations from a stratified and sheared tidal estuary and laboratory measurements. The closure is able to simulate observed turbulent dissipation rates (ε) and turbulent length scales (lth) in regions of strong mean shear and small gradient Richardson number (Rg) to within factors of 2–3. It fails in regions of small shear and large Rg, presumably because of the dominance of internal wave-driven mixing. Additional simulations with a kε closure with stability functions taken from Canuto et al. [Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413–1426] and with the closure of Baumert and Peters [Baumert, H., Peters, H., 2004. Turbulence closure, steady state, and collapse into waves. J. Phys. Oceanogr. 34, 505–512] show poor performance. Establishing a valid 1:1 comparison of simulated and observed ε and lth requires nudging the model velocity and density toward observed values because free model integrations quickly diverge from the observations. Steady state gradient Richardson numbers are constrained to a range of 0.18–0.25, while flux Richardson numbers are constrained to the range of 0.1–0.22. The closure output is rather insensitive to such parameter variations. The simulations are sensitive, however, to the treatment of the observed velocity and density used to nudge the model. Good closure performance requires averaging the measured tidal flow over about an hour, a time scale for which conventional numerical models of estuarine circulations should be able to match observed shears. In the closure simulations the TKE balance stays close to a production–dissipation balance. The time rate of change and vertical diffusion of TKE are small, of the same order of magnitude, and vary in magnitude relative to each other systematically across the water column.  相似文献   

4.
Modeling of the Turbulence in the Water Column under Breaking Wind Waves   总被引:1,自引:0,他引:1  
Past studies have shown that there is a wave-enhanced, near-surface mixed-layer in which the dissipation rate is greater than that derived from the “law of the wall”. In this study, turbulence in water columns under wind breaking waves is investigated numerically and analytically. Improved estimations of dissipation rate are parameterized as surface source of turbulent kinetic energy (TKE) for a more accurate modelling of vertical profile of velocity and TKE in the water column. The simulation results have been compared with the experimental results obtained by Cheung and Street (1988) and Kitaigorodskii et al. (1983), with good agreement. The results show that the numerical full model can well simulate the near-surface wave-enhanced layer and suggest that the vertical diffusive coefficients are highly empirical and related to the TKE diffusion, the shear production and the dissipation. Analytical solutions of TKE are also derived for near surface layer and in deep water respectively. Near the surface layer, the dissipation rate is assumed to be balanced by the TKE diffusion to obtain the analytical solution; however, the balance between the dissipation and the shear production is applied at the deep layer. The analytical results in various layers are compared with that of the full numerical model, which confirms that the wave-enhanced layer near the surface is a diffusion-dominated region. The influence of the wave energy factor is also examined, which increases the surface TKE flux with the wave development. Under this region, the water behavior transits to satisfy the classic law of the wall. Below the transition depth, the shear production dominantly balances the dissipation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Plant-flow interactions on the surface of tidal wetlands result in flow characteristics that are profoundly different from non-vegetated flows. Reductions in mean flow velocity and turbulence, especially the vertical components, limit vertical mixing and may impact a wide range of processes including geochemical exchanges at the sediment water interface, larval recruitment and dispersion, and sediment deposition and retention. The goal of this paper is to quantify horizontal and vertical components of velocity, turbulence intensity and total turbulent kinetic energy in Spartina alterniflora canopies in southeastern North Carolina and to relate flow characteristics to particulate transport on the marsh surface. Another aim of this paper is to assess the extent to which the distribution of standing biomass affects mean flow and turbulence by comparing S. alterniflora data to other canopy types and through a series of canopy manipulations which altered canopy height and stem densities.The results of this study indicate that flow velocity, turbulence intensity, and total turbulent kinetic energy (TKE) are significantly reduced within the vegetated canopy and that this reduction is inversely related to the amount of biomass present in the water column. Within the canopy, approximately 50% of the initial mean velocity and TKE is reduced within 5 m of the canopy edge. Within the canopy, mean velocity and TKEhoriz usually exceeded vertical velocity or TKEvert and the vertical components of flow were attenuated more strongly than the horizontal. These results suggest that within the vegetation, turbulence contributes more to lateral advection than to vertical mixing. As a result, total suspended solid concentrations were shown to decrease logarithmically with distance from the canopy edge and to decrease at a faster rate in more densely vegetated regions of the canopy (i.e. lower TKEvert) as compared to areas of sparser vegetation (i.e. higher TKEvert).  相似文献   

6.
The terms of the steady-state turbulent kinetic energy (TKE) budget in the oceanic convective boundary layer (CBL) are estimated by use of microstructure data obtained over the continental shelf of the East China Sea. The dissipation term is calculated from the micro-scale vertical shear of horizontal velocity measured directly using a freely-falling microstructure profiler, whereas the buoyancy flux and shear production terms are estimated indirectly by integrating vertically the one-dimensional conservation equation of density and by applying similarity theory, respectively. The transport term, calculated as the residual of the other three terms, vertically redistributes the TKE from the upper half of the CBL to the lower half, consistent with the TKE budgets in the atmospheric CBL and in shear-free and slightly-sheared CBLs simulated by large eddy-simulation models. The relatively large contribution of the transport term to the TKE budget shows that a local equilibrium form of the TKE equation is not appropriate for the TKE budget in the oceanic CBL.  相似文献   

7.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

8.
Estimation of Bed Shear Stresses in the Pearl River Estuary   总被引:1,自引:0,他引:1  
Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler(PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary.The bed shear stresses were estimated by four different methods:log profile(LP),eddy correlation(EC),turbulent kinetic energy(TKE),and inertial dissipation(ID).The results show that(a) all four methods for estimating bed stresses have advantages and disadvantages,and they should be applied simultaneously to obtain reliable frictional velocity and to identify potential sources of errors;(b) the LP method was found to be the most suitable to estimate the bed stresses in non-stratified,quasi-steady,and homogeneous flows;and(c) in the estuary where the semi-diurnal tidal current is dominant,bed shear stresses exhibit a strong quarter-diurnal variation.  相似文献   

9.
10.
A number of parameterisations for the simulation of mixing processes in the thermocline are compared and tested against the microstructure data of the PROVESS campaigns, conducted in the northern part of the North Sea during the autumn of 1998. The transport term in the turbulent kinetic energy equation is parameterised via the introduction of a third stability function Sk for turbulent energy diffusion. The formulations are compared with a simpler scheme based upon limiting conditions for turbulence variables. Improved results are obtained with a new form of Sk. The best agreement is, however, found with the simpler limiting scheme. This is explained in terms of a turbulence length scale theory for stably stratified turbulence. In agreement with previous laboratory and ocean data it is found that the ratios of the Thorpe and Kolmogorov scales to the Ozmidov length scale approach critical limiting values in the thermocline. The first of these conditions is satisfied when limiting conditions are implemented into the scheme, providing the necessary minimum value for the dissipation rate, whereas the schemes without limiting conditions fail to produce this critical ratio. The basic reason for this failure is that the Thorpe scale is overestimated, which is shown to be connected to an even larger overprediction of the dissipation rate of temperature variance. To investigate the impact of non-resolved advective processes and salinity stratification on the turbulence predictions, additional numerical experiments were conducted using a simple scheme for data assimilation. The best agreement is found again with the limiting scheme, which is able to make reasonable predictions for the dissipation rate without knowing the detailed shape of the mean stratification profile. It is shown that advective transport due to tidally and wind-driven motions has a non-negligible impact on vertical mixing. This is seen in the data and the models by periodic enhancements of turbulent mixing inside the thermocline.  相似文献   

11.
Estimates of vertical turbulent diffusion coefficient (K t ) in the Black Sea pycnohalocline have been obtained from data of simultaneous observations of seawater temperature, salinity, density, and horizontal current velocity, obtained in the northeastern part of the Black Sea during 2013–2014 with a moored Aqualog profiler. A Munk and Andersson (1948) type parameterization, adapted for the Black Sea environment, is proposed for calculating K t . Strong short-period (several days) variability of turbulent exchange is revealed, induced by vertical shear variations of the current velocity.  相似文献   

12.
小尺度湍流过程对河口物质输运与能量交换至关重要。受传统观测方法的限制, 河口浅水区域的剖面观测资料至今较为匮乏, 进而限制了湍流过程的研究。为此, 采用新型5波束声学多普勒流速剖面仪(Nortek Signature 1 000 kHz AD2CP)在长江口开展湍流剖面观测, 获取高频、低噪的高质量湍流剖面数据, 并与声学多普勒点式流速仪(acoustic doppler velocimeters, ADV)同步观测的数据进行对比。结果表明, 通过AD2CP与ADV获得的近底部边界层摩阻流速u*、拖曳系数Cd、雷诺应力SR等特征参数基本一致, 底摩擦与波浪能量为河口区域湍动能的主要输入源。湍流垂向结构存在显著的非局地平衡, 即温盐等斜压作用引起的浮力通量、对流项以及强波浪作用影响的脉动压力做功、黏性输运等因素可能为长江口湍流非局地平衡的主因。  相似文献   

13.
利用2019年7月在长江口科学考察实验研究夏季航段(NORC2019-03-02)中获得的MSS90L湍流剖面仪的直接观测数据,本文计算并分析了该断面的湍动能耗散率ε和垂向湍扩散系数KZ的分布情况。湍动能耗散率的大小为1.72×10?10~2.95×10?5 W/kg;垂向湍扩散系数的大小为3.24×10?7~4.55×10?2 m2/s。湍动能耗散率和垂向湍扩散系数的分布相似,均为上层最强,底层次之,中层最弱。上层由于风应力的作用,使得湍动能耗散率和垂向湍扩散系数较大;温跃层处层化较强,抑制了湍动能的耗散和垂向上的湍混合。盐度锋面的次级环流会促使低盐水团脱离,锋面引起的垂向环流会加强海洋的湍混合。低盐水团与外界的能量交换较少,湍动能耗散率较弱。长江口海区存在明显的上升流和下降流,它们是由锋面的次级环流产生的;上升流和下降流的存在促进湍动能的耗散与湍混合。  相似文献   

14.
A computational fluid dynamics (CFD) model was developed to simulate the turbulent flow and species transport of deep-sea high temperature hydrothermal plumes. The model solves numerically the density weighted unsteady Reynolds-averaged Navier–Stokes equations and energy equation and the species transport equation. Turbulent entrainment and mixing is modeled by a kε turbulence closure model. The CFD model explicitly considers realistic vent chimney geometry, vent exit fluid temperature and velocity, and background stratification. The model uses field measurements as model inputs and has been validated by field data. These measurements and data, including vent temperature and plume physical structure, were made in the ABE hydrothermal field of the Eastern Lau Spreading Center. A parametric sensitivity study based on this CFD model was conducted to determine the relative importance of vent exit velocity, background stratification, and chimney height on the mixing of vent fluid and seawater. The CFD model was also used to derive several important scalings that are relevant to understanding plume impact on the ocean. These scalings include maximum plume rise height, neutrally buoyant plume height, maximum plume induced turbulent diffusivity, and total plume vertically transported water mass flux. These scaling relationships can be used for constructing simplified 1-dimensional models of geochemistry and microbial activity in hydrothermal plumes. Simulation results show that the classical entrainment assumptions, typically invoked to describe hydrothermal plume transport, only apply up to the vertical level of ~0.6 times the maximum plume rise height. Below that level, the entrainment coefficient remains relatively constant (~0.15). Above that level, the plume flow consists of a pronounced lateral spreading flow, two branches of inward flow immediately above and below the lateral spreading, and recirculation flanking the plume cap region. Both turbulent kinetic energy and turbulence dissipation rate reach their maximum near the vent; however, turbulent viscosity attains its maximum near the plume top, indicating strong turbulent mixing in that region. The parametric study shows that near vent physical conditions, including chimney height and fluid exit velocity, influence plume mixing from the vent orifice to a distance of ~10 times the vent orifice diameter. Thus, physical parameters place a strong kinetic constraint on the chemical reactions occurring in the initial particle-forming zone of hydrothermal plumes.  相似文献   

15.
The influence of high vertical velocity gradients in the Black Sea Rim Current on the intensity of the vertical turbulent exchange is demonstrated on the basis of numerical modeling based on CTD data. The vertical turbulent exchange is confirmed by the anomalous distribution of the hydrochemical parameters in the redox layer. A system of equations for the kinetic energy of the turbulence and dissipation rate (k-? model) is used for the calculation of the coefficient of the vertical turbulent viscosity (diffusivity).  相似文献   

16.
Dissipation rate statistics in the near-surface layer of the ocean were obtained during the month-long COARE Enhanced Monitoring cruise with a microstructure sensor system mounted on the bow of the research vessel. The vibration contamination was cancelled with the Wiener filter. The experimental technique provides an effective separation between surface waves and turbulence, using the difference in spatial scales of the energy-containing surface waves and small-scale turbulence. The data are interpreted in the coordinate system fixed to the ocean surface. Under moderate and high wind-speed conditions, we observed the average dissipation rate of the turbulent kinetic energy in the upper few meters of the ocean to be 3–20 times larger than the logarithmic layer prediction. The Craig and Banner (J. Phys. Oceanogr. 24 (1994) 2546) model of wave-enhanced turbulence with the surface roughness length from the water side z0 parameterized according to the Terray et al. (J. Phys. Oceanogr. 26 (1996) 792) formula z0=cHs provides a reasonable fit to the experimental dissipation profile, where z is the depth (defined here as the distance to the ocean surface), c≈0.6, and Hs is the significant wave height. In the wave-stirred layer, however, the average dissipation profile deviates from the model (supposedly because of extensive removing of the bubble-disturbed areas close to the ocean surface). Though the scatter of individual experimental dissipation rates (10-min averages) is significant, their statistics are consistent with the Kolmogorov's concept of intermittent turbulence and with previous studies of turbulence in the upper ocean mixed layer.  相似文献   

17.
On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal waves are not only turbulence, but also the fine-scale near-inertial internal waves (the oceanic reversible finestructure) for inertial waves and the internal solitary waves for internal tides respectively. It was found that the oceanic reversible finestructure may be induced by the effect of the horizontal component f (f = 2Ωcosφ) of the rotation vector on inertial waves. And a new instability of the theoretical shear and strain spectra due to the effect of f occurs at critical vertical wavenumber β c ≈ 0.1 cpm. It happens when the levels of shear and strain of the reversible finestructure are higher than those of inertial waves, which is induced by the effect of f along an "iso-potential-pycnal" of internal wave. If all breaking products of internal waves are taken into account, the average kinetic energy dissipation rate is an order of magnitude larger than the values of turbulence observed by microstructure measurements. The author’s theoretical research results are basically in agreement with those observed in IWEX, DRIFTER and PATCHEX experiments. An important impersonal fact is that on the mean temporal scale of thermohaline circulation these breaking products of internal waves exist simultaneously with turbulence. Because inertial waves are generated by winds at the surface, and internal tides are generated by strong tide-topography interactions, the analysis and justification in this paper support in principle the abyssal recipes Ⅱ:energetics of tidal and wind mixing by Munk & Wunsch in 1998, in despite of the results of microstructure measurements for the turbulent kinetic energy dissipation rate and the diapycnal turbulent eddy diffusivity.  相似文献   

18.
Channel constrictions within an estuary can influence overall estuary-sea exchange of salt or suspended/dissolved material. The exchange is modulated by turbulent mixing through its effect on density stratification. Here we quantify turbulent mixing in Hikapu Reach, an estuarine channel in the Marlborough Sounds, New Zealand. The focus is on a period of relatively low freshwater input but where density stratification still persists throughout the tidal cycle, although the strength of stratification and its vertical structure vary substantially. The density stratification increases through the ebb tide, and decreases through the flood tide. During the spring tides observed here, ebb tidal flow speeds reached 0.7?m?s?1 and the buoyancy frequency squared was in the range 10?5 to 10?3?s?2. Turbulence parameters were estimated using both shear microstructure and velocimeter-derived inertial dissipation which compared favourably. The rate of dissipation of turbulent kinetic energy reached 1?×?10?6?m2?s?3 late in the ebb tide, and estimates of the gradient Richardson number (the ratio of stability to shear) fell as low as 0.1 (i.e. unstable) although the results show that bottom-boundary driven turbulence can dominate for periods. The implication, based on scaling, is that the mixing within the channel does not homogenise the water column within a tidal cycle. Scaling, developed to characterise the tidal advection relative to the channel length, shows how riverine-driven buoyancy fluxes can pass through the tidal channel section and the stratification can remain partially intact.  相似文献   

19.
Reynolds stress and TKE production in an estuary with a tidal bore   总被引:4,自引:0,他引:4  
We report new measurements of the turbulent properties of the flow in a tidally energetic estuarine channel of almost uniform cross-section. A high-frequency (1.2 MHz), bottom-mounted Acoustic Doppler Current Profiler (ADCP) has been used to observe the velocity field at a sampling rate of 10 Hz in parallel with measurements of the surface elevation by tide gauges. Our data have been analysed using the Variance Method to determine turbulent kinetic energy (TKE), shear stress and TKE production over the tidal cycle with a time resolution of 60 s. During the highly energetic but brief flood period, when the surface axial velocity reaches 2 m s−1, we observed large values of stress (>2 Pa) and shear production (5 W m−3). TKE is also input through the release of energy in the bore itself which results in a brief but intense injection of energy at the bore front with large transient TKE levels (100 J m−3). Subsequent input by shear production maintains TKE levels which are generally lower (20 J m−3) than the strong peak associated with the bore for the rest of the flood. On the ebb, the flow is relatively tranquil with maximum speeds 0.5 m s−1 and peak TKE production rates of 0.1 W m−3.The flow and elevation data have also been used to estimate the energy fluxes into and out of the estuary. Short (1 h), intense energy inputs (8 MW at springs) on the flood flow are largely balanced by longer, less intense seaward energy flow on the ebb. The net energy input is found to be 0.1 MW at springs which is consistent with estimates of upstream dissipation. Peak dissipation in the bore itself may exceed the mean energy input but it is active only for a small fraction of the tidal cycle and its average contribution does not exceed 12% of total dissipation.  相似文献   

20.
为探索反演湍流耗散率的最优方法,促进湍流规律和机理研究以及相关方法的业务化应用,文章根据风廓线雷达和无线电-声探测系统的探测原理,选取实例数据,通过虚温计算的布维频率和大气湍流引起的谱宽反演湍流耗散率。研究结果表明:该方法较为有效和简便,适用于加装无线电-声探测系统的风廓线雷达;湍流耗散率并不完全随高度增加而递减,而存在某高度层内湍流较强的现象;湍流耗散率与大气稳定度相互影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号