首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-component recordings of shear-waves in exploration surveys provide an opportunity to measure crustal anisotropy, which may be important in estimating the geometrical and physical parameters of reservoir rocks. VSPs are particularly important for this purpose as they are less subject to the complex interactions of the shear wavefield with the free surface. The first stage in characterizing the subsurface anisotropy requires that the distinctive phenomenon of shear-wave splitting must be examined for every arrival at each geo-phone. This effect may be defined by two parameters: the polarization of the leading shear-wave and the time-delay between corresponding split shear-waves. A variety of techniques have been designed to estimate these parameters of shear-wave splitting. Here, we classify the published techniques into four main categories and review their properties. Representative procedures from each group are applied to a common synthetic data set contaminated with signal-generated noise. The results allow some general statements to be made about the utility of these methods for processing shear-waves in VSP data.  相似文献   

2.
Recent observations show that the differential amplitudes between the faster and slower split shear-waves in reflection surveys contain information about lateral variations of crack density in cracked reservoirs. However, the variation of amplitude with crack geometry when the crack strike changes with depth has not been reported previously. In this paper, we derive expressions for reflection and transmission coefficients of plane split shear-waves at vertical incidence at an interface separating two cracked (anisotropic) media with different crack strikes. We examine the effects on these coefficients as crack strike and crack density vary. For interfaces with large velocity-contrasts, the reflection coefficients carry little information about crack geometry, and the effects of crack strike varying with depth are negligible. In such cases, the polarization and time-delay of the split shear-waves are the only features which reliably diagnose anisotropy and contain information about the variation of crack strike and density. However, for interfaces with small velocity-contrasts, the effects of any variation of crack strike with depth cannot be neglected. In such cases, in addition to the polarization and time-delays of split shear-waves, both the differential amplitude of faster and slower shear-waves and the amplitude ratio of the two off-diagonal elements in the reflected data matrix after separation of split shear-waves, contain information about the variation of crack strike and crack density. In contrast, effects of crack strike changing with depth on transmitted waves are more sensitive regardless of the velocity-contrast and the degree of anisotropy.  相似文献   

3.
The accuracy of estimating crack-strike from the algebraic equivalent of a popular technique, the dual source cumulative technique (DCT), for analysing shear-wave splitting in seismic experiments is evaluated for earth models permeated by different alignments of micro-cracks. A complementary analysis is performed using another analysis procedure, the dual-independent source-geophone technique (DIT), to investigate any benefits of the alternative formulation. The investigation considers synthetic vertical seismic profile (VSP) and reflection data for an earth model with two layers over a half-space, and three different classes of crack-strike variation with depth: uniform crack-strike, an abrupt change of crack-strike between the upper and lower layer, and a continuous increase over both layers. The synthetic data for zero-offset and near-offset VSPs and a reflection profile are computed using a full-wave modelling package in which equivalent anisotropic media simulate distributions of aligned vertical, parallel, water-filled microcracks. Estimates from the two techniques agree for the constant crack-strike model, but differ for the VSP data with crack-strike changes. The asymptotic behaviour of the two angular parameters θG and θS from DIT suggest that it may be used to determine crack-strike under appropriate circumstances in these VSPs, when the time-delay between the split shear-waves for the layer of interest exceeds the peak period of the wavelet. In this limit, θG tends to follow the crack-strike change with θS tending to a constant value, whereas DCT will give a misleading value between the upper and lower crack-strike. Although the behaviour of DIT is not understood in all cases, θG and θS values from the VSP data always appear to diverge near the point where an abrupt crack-strike change takes place. This could be used as a qualitative indicator for layer stripping. Both techniques agree for the reflection data as the recorded data matrix is necessarily symmetric, but still give misleading results for deeper layers in the presence of crack-strike changes. This study suggests that more care should be taken when designing and analysing experimental configurations for detecting crack properties in reservoir rocks, to consider the response and resolution limits of the analysis techniques. A note of caution is offered to those who directly interpret polarization estimates as crack-strike.  相似文献   

4.
Introduction Anisotropy of the crust is a common phenomenon(Crampin,1984).Shear-wave splitting can be used to study the earthquake anisotropic characteristic in crust,to analyze crustal stress field condition,and to describe the static and the dynamic state of the related anisotropic parameters(GAO et al,1999).Shear-wave splitting is quite sensitive to anisotropy.The domestic scholars applied shear-wave splitting to studying the crustal anisotropy(YAO et al,1992;GAO and FENG,1990).The st…  相似文献   

5.
The scattering of shear-waves in the crust   总被引:2,自引:0,他引:2  
The two major sources of scattering for shear-waves in the crust, interactions with the topography at the surface and the effective anisotropy of aligned cracks throughout the rockmass, introduce first-order changes to the shear-wave particle-motion. At the surface, shear-waves are scattered by the topography within a wavelength or two of the recording site so that, unless the effective incidence angle is less than the critical angle sin–1 V S/V P, the recorded waveforms may bear little relationship to the waveforms of the incident wave. Within the rockmass, shear-waves are scattered by extensive-dilatancy anisotropy (EDA), the distribution of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore-space pervading most rocks in the crust. Analysis of this shear-wave splitting yields new information about the internal structure of thein situ rockmass which is not otherwise available.  相似文献   

6.
本文测定了2013年4月20日芦山MS7.0地震震源区及其附近台站的S波分裂参数,包括快波偏振方向和慢波延迟时间,最终得到了40个台站的S波分裂结果.结果显示:在地震主破裂区内观测到的快波优势取向为NE向,与余震分布的长轴方向一致;位于双石—大川断裂以西台站的快波偏振优势方向为NW向,与区域最大主压应力轴方向一致;位于荥经断裂附近台站的快波偏振优势方向为NW向,与该断裂走向一致.快波偏振优势方向随时间的变化结果显示:主震前位于地震破裂区附近的TQU和BAX台站的快波偏振优势方向均呈NE向;主震后TQU台站的快波偏振优势方向为近EW向,而BAX台站的快波偏振优势方向则不突出,反映出芦山地震主震前快波偏振方向受控于龙门山断裂带,而主震后受构造应力场的作用更加明显.此外,各台站的慢波延迟时间为1.25—5.40ms/km,在余震覆盖密集区域,台站的慢波延迟时间均大于3.0ms/km,反映出震源区的各向异性程度较强.芦山主震后,各台站的延迟时间随时间变化持续减小,反映出震源区地壳应力随余震活动逐渐减小.   相似文献   

7.
This paper aims to improve current understanding of the subsurface fracture system in the Coso geothermal field, located in east-central California. The Coso reservoir is in active economic development, so that knowledge of the subsurface fracture system is of vital importance for an accurate evaluation of its geothermal potential and day-to-day production. To detect the geometry and density of fracture systems we applied the shear-wave splitting technique to a large number of high-quality seismograms from local microearthquakes recorded by a permanent, 16-station, down-hole, 3-component seismic array running at 480 samples/s. The analysis of shear-wave splitting (seismic birefringence) provides parameters directly related to the strike of the subsurface fractures and their density (number of cracks per unit volume), and, consequently, is an important technique to outline zones of high permeability. Three major fracture directions N10–30W, N0–20E, and N40–50E, of which the first and the second are the most prominent, were identified from the seismograms recorded by the 16-station down-hole array. All orientations are consistent with the known strike of local sets of faults and fractures in local wells and at the surface, as well as with previous analyses of seismic anisotropy in the region. The high quality of the recordings has allowed us to launch an unprecedented investigation into the characteristics of the temporal variations in crack polarization and crack density in a producing geothermal environment. Preliminary results point to significant temporal changes in shear-wave time delays, probably influenced by temporal changes in crack density within a period of 5 years (1996–2000). They are tentatively interpreted as due to a local 3% increase in shear-wave velocity in the southwestern part of the field during 1999.  相似文献   

8.
Ubiquitous splitting of seismic shear-waves indicates that most rocks in the upper half of the crust are pervaded by stress-aligned fluid-filled inclusions, called EDA-cracks. These inclusions are expected to be aligned perpendicular to the minimum compressional stress by stress relationships similar to those aligning industrial hydraulic fractures. At depths where the overburden stress is sufficiently large (typically below a few hundred metres), this minimum stress is usually horizontal, so that the EDA-cracks and hydraulic fractures are typically aligned vertically, striking parallel, or subparallel, to the direction of maximum compression. This is confirmed by the polarizations of the split shear-waves along raypaths at depth in the crust. At the free surface, however, the vertical stress is zero (or approximately zero) and cracks (and hydraulic fractures) at shallow depths in intact rock tend to be horizontal. Thus, the directions of minimum stress, and the orientations of hydraulic fractures, are likely to swing through 90° near the surface of the Earth. Since the behaviour of cracks and stress is often crucial to drilling operations, the rotation of the crack- and stress-geometry near-surface has important implications, particularly for optimizing hydrocarbon production and geothermal reservoir management. Consequently, evidence gained from experiments, for example in hot-dry-rock geothermal heat extraction, in inappropriate crack geometries at shallow depths, may not be valid when applied to other crack- and stress-geometries at depth in hot rock.  相似文献   

9.
Obtaining high-resolution images of the geology and hydrogeology of the subsurface in the depth range from ground level to 50 m is one of the major challenges of modern geophysics. The methods which are commonly used (such as compressional-wave surveys and ground-penetrating radar) often suffer from adverse effects caused by the near-surface conditions, changes in water saturation and various sources of noise. This paper demonstrates some of the advantages offered by the use of shear-wave seismology and by the combination of shear- and compressional-wave seismic methods in shallow subsurface investigations.
Multicomponent shallow seismic tests were carried out at four different sites to examine the effectiveness of different acquisition geometries under a variety of near-surface geological conditions. Near-surface conditions encountered at the sites included thick clays, clay/sand sequences overlying Chalk, mudstone overlying granodiorite bedrock and landfill material.
Under all conditions, shear-wave data acquisition was found to have advantages over compressional-wave acquisition for the investigation of the shallow subsurface. Shear head waves, being unaffected by water saturation, achieved penetration to greater depths at a site in Crewkerne, Dorset where compressional head-wave penetration was limited to the near-surface layers. Better vertical resolution was achieved at shallow depths using shear-wave reflection energy at a landfill site. Shear-wave reflections from shallow interfaces were in some cases less affected by noise compared with the equivalent compressional-wave reflections. Combinations of shear- and compressional-wave data recording allowed the measurement of a Poisson's ratio log and gave indications of seismic anisotropy at two sites where dipping clay layers were present.  相似文献   

10.
Observations of shear-wave splitting at seismic stations above a swarm of small earthquakes on Hainan Island, China, and other examples world-wide, suggest that the time-delays of split shear-waves monitor the build up of stress before earthquakes and the stress release as earthquakes occur. Rock physics experiments on marble specimens also show variations of shear-wave time-delays with uniaxial pressure analogous to the field observations. The rock experiments show an abrupt decrease in time-delays immediately before fracturing occurs. Similar precursory behaviour has been observed before earthquakes elsewhere, and is believed to be important for two reasons. Precursory changes in shear-wave splitting could be used for short-term forecasting, but of greater importance may be the information such behaviour provides about the source processes in earthquake preparation zones.  相似文献   

11.
云南地区地壳介质各向异性——快剪切波偏振特性   总被引:26,自引:7,他引:19       下载免费PDF全文
石玉涛  高原  吴晶  罗艳  苏有锦 《地震学报》2006,28(6):574-585
通过对云南遥测地震台网2000年1月1日——2003年12月31日4年资料的分析, 使用剪切波分裂SAM综合分析方法,获得了云南地区10个数字地震台站的快剪切波偏振结果. 结果表明, 云南地区大部分台站的快剪切波偏振优势方向主要为近N——S或NNW方向; 位于活动断裂上的台站的快剪切波偏振优势方向与活动断裂的走向一致;与GPS主压应变方向一致,与区域主压应力方向基本一致;少数台站的快剪切波偏振较为复杂,或与活动断裂的走向及GPS主压应变方向不一致. 这样的台站总是位于几个断裂的交会处,反映了复杂的断裂背景和复杂的应力分布特征. 快剪切波偏振优势方向代表了原地最大主压应力方向,受到区域应力场和断裂分布等多种因素的控制.   相似文献   

12.
辽宁1999年Ms5.9岫岩地震的剪切波分裂特征   总被引:4,自引:1,他引:3       下载免费PDF全文
利用辽宁遥测数字地震台网营口台的地震波形资料,采用高原等剪切波分裂SAM分析方法,对1999年11月29日辽宁省岫岩Ms5.9(ML5.3)地震前后的地震序列进行了剪切波分裂分析.通过对营口台的资料分析表明,快剪切波优势偏振方向为ENE-WSW向,与该地区主压应力方向一致,也与华北区域构造应力场方向一致;平均慢剪切波时间延迟在岫岩地震前显示增加,可能反映了震前的应力积累过程.营口台的快剪切波优势偏振方向还与小地震活动空间分布走向一致,与活动断层走向相关.快剪切波偏振的月平均变化直方图也显示,地震前两个月快剪切波偏振方向似乎也有变化,但这个现象还需要更多资料的证实.  相似文献   

13.
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.  相似文献   

14.
辽宁区域地震台网的地壳剪切波分裂研究   总被引:5,自引:1,他引:4       下载免费PDF全文
主要利用辽宁区域地震台网8个台站记录到的1999年6月至2004年12月的波形数据,采用剪切波分裂SAM分析方法,对辽宁地区的剪切波分裂特征进行了研究。发现大部分台站的快剪切波优势偏振方向为NEE(近EW)向,与原地主压应力方向一致,也与华北北部的区域构造应力场方向一致。然而,辽宁中部的SJ台站和东部的KD台站的快剪切波优势偏振方向分别为近NS向和NW向,与其他台站的结果有差异,可能是受到复杂的局部构造的控制和影响,这2个台站的结果还需要更多资料的证实。根据GPS、地震和地球物理等其它资料,对该地区断层的区域分布、主压应力以及剪切波分裂参数的空间分布特征进行了讨论  相似文献   

15.
A global optimization method incorporating a ray-tracing scheme is used to invert observations of shear-wave splitting from two near-offset VSPs recorded at the Conoco Borehole Test Facility, Kay County, Oklahoma. Inversion results suggest that the seismic anisotropy is due to a non-vertical fracture system. This interpretation is constrained by the VSP acquisition geometry for which two sources are employed along near diametrically opposite azimuths about the well heads. A correlation is noted between the time-delay variations between the fast and slow split shear waves and the sandstone formations.  相似文献   

16.
张艺  高原 《地球物理学报》2017,60(6):2181-2199
利用中国地震科学台阵第一期(2011-01-2014-06)及部分中国地震科学台阵第二期(2013-02-2015-12)的流动地震台阵记录到的小震波形资料,运用剪切波分裂系统分析(SAM)方法,分析南北地震带的地壳各向异性,对剪切波分裂参数所反映的区域应力环境及构造特征,以及区域内主压应力方向与断裂分布的关系展开讨论.研究结果表明,南北地震带快剪切波偏振方向自北向南由NE向逐渐转变为NNW向,与南北地震带区域主压应力的方向变化具有一致性.区域内分布的大量NE及WNW或NW向断裂构造同样对快波偏振方向有比较大的影响,位于走滑断裂附近的台站,其快波方向与断裂走向大致平行,部分位于走滑断裂附近的台站其快波方向几乎垂直于断裂走向,而与构造应力场方向一致性较好.个别台站表现出复杂快波优势方向特征,反映出研究区内构造环境的复杂性.慢波时间延迟结果显示,南北地震带南段的平均时间延迟高于北段,反映了受印度板块和欧亚板块的碰撞挤压作用,南段地壳介质各向异性程度更大,构造变形更加剧烈.对比南北地震带上地幔各向异性特征,推测在川滇菱形块体内部可能存在复杂的壳幔耦合现象,地壳剪切波分裂除了反映区域应力特征,还可以揭示出区域构造信息.  相似文献   

17.
唐山地区剪切波分裂研究   总被引:7,自引:1,他引:7  
孙勇  郑斯华 《中国地震》1993,9(1):60-67
本文利用唐山地区的数字化地震资料,研究了唐山地区的剪切波分裂现象。通过对唐山强地面运动台网中七个台的三分向数字化记录资料的研究发现,1982—1984年发生的大部分地震都有较明显的S波分裂现象。七个台站的初至分裂S波的极化方向都在近东西方向,这与该地区的主压应力场方向相一致。各台慢S波延时的平均值在0.005—0.008s/km之间,由此可以粗略地估计得到各个台站的裂纹密度为:0.019(TS01,TS02,TS15),0.015(TS03,TS07,TS18)和0.024(T19)。  相似文献   

18.
Three-component seismograms at the three USC stations, PVP, GFP and DHB, have been examined. Most earthquakes, with magnitudes ranging from 1.4 to 5.0, within a period from 1985 to 1988, show evidence of shear-wave splitting. The preferred polarization of the first split-shear wave arrivals at PVP is nearly in N-S which is consistent with both regional maximum horizontal compressive stress direction and local subsurface fault strike, showing that shear-wave splitting is caused by liquid-filled cracks or fractures associated with the N-S faulting. The polarizations of first shear wave arrivals at GFP are roughly divided into two almost perpendicular directions, ENE-WSW and NNW-SSE, which are parallel or perpendicular to the strike of the geology or topography near the station. Because GFP is near the foothills of Santa Monica Mountains, the shear-wave arrivals may be disturbed by topographic irregularities and by subsurface dipping interfaces. Two examples at DHB clearly display shear-wave splitting. Their polarizations of shear wave are in the direction of N-S, which agree with the fragmentary surface and fracturing direction there. From some relatively reliable delay times, the crack densities at three stations are given, that is, 0.025 at PVP, 0.020 at GFP and 0.045 at DGB. No systematic change of shear-wave polarization is discovered in this study.  相似文献   

19.
通过对山西数字地震台网2000年6月—2012年12月的波形记录资料的分析, 使用剪切波分裂系统分析方法, 即SAM综合分析方法, 获得了山西地区18个数字地震台站的快剪切波偏振结果. 结果表明: 位于活动断裂上的台站的快剪切波偏振优势方向与活动断裂的走向基本一致; 个别距离断裂较远的台站的快剪切波偏振优势方向与震源机制解及GPS主压应变方向完全一致; 少数位于几条断裂交汇处的台站的快剪切波偏振优势方向则较为复杂, 与活动断裂的走向和GPS主压应变方向均不一致, 反映了该地区断裂背景和应力分布特征的复杂性.   相似文献   

20.
四川紫坪铺水库库区地震剪切波分裂研究   总被引:6,自引:2,他引:4       下载免费PDF全文
本研究利用四川紫坪铺水库数字地震台网2004年8月17日~2008年5月11日的地震观测波形资料,使用剪切波分裂SAM系统分析方法,获得了四川紫坪铺水库库区8个数字地震台站的快剪切波偏振结果.结果表明,紫坪铺库区台站的快剪切波偏振优势方向主要为NE或NW方向;台站的快剪切波偏振优势方向与区域主压应力方向或活动断裂走向一致;快剪切波偏振方向变化可能与汶川大地震前区域应力场的增加和龙门山断裂带微破裂增加有关,慢剪切波时间延迟的变化与四川紫坪铺水库水位升降变化相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号