首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Above the marine limit in Gangdalen, Nordenskiold Land, a 20 m thick sequence of unconsolidated sediments occurs. On the top of striated bedrock it is composed of a 2m thick till bed, 15m gravel interpreted to be deposited as a sandur, and another till bed on the top. A solifluction deposit is capping the section. Fabric analyses and erratics in the two tills indicate a similar development in glacial transport directions during the two glaciations, starting with a local glaciation which subsequently turns into a larger glaciation centred over the eastern part of Svalbard. Co-existence of different ice domes over Spitsbergen is suggested. The sandur was deposited during an ice free period with a sea-level 40–80 m higher than at present. The section is undated.  相似文献   

2.
The Dongting Lake is located in the south beach of the middle reaches of the Yangtze River. Its catchment, with an area of 262,823 km2 or about 12% of the total Yangtze River catchment, is situated between 28o43?29o32扤 and 112o54?113o8扙, and crosses Hubei and Hunan provinces in administrative division. The main tributaries include Xiangjiang, Zishui, Yuanjiang, Lishui rivers (4 Tributaries) and some local rivers, such as Miluo River, Xinqiang River and other little streams. In the nor…  相似文献   

3.
Traces of former glaciation were studied on Erdmannflya and Bohemanflya. Both peninsulas were probably completely covered by glaciers during the Late Weichselian and the final dcglaciation took place around years BP. Esmarkbreen readvanced shortly after 9,500 BP, probably a local and shortlasting event. Raised beaches occur to about 60 m above sea level, and date back to about 10,000 BP. Initial land emergence was rapid, about 3m/100 years. It seems to have been followed by a marine transgression between 8,500 and 7,500 BP, which resulted in a large and distinct beach bridge and marine abrasion cliffs about 10-12 m above present sea level. Mytilus edulis lived in the area between at least 9.000 and 5,000 BP. Five thousand years ago relative sea level probably stood 3-4 m higher than today. Relative sea level has remained close to present during the last centuries. Different positions of glacier fronts in this century have also been mapped.  相似文献   

4.
Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high‐energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W‐basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off‐shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.  相似文献   

5.
Late‐middle Miocene to Pliocene siliciclastics in the Northern Carnarvon Basin, Northwest Shelf of Australia, are interpreted as having been deposited by deltas. Some delta lobes deposited sediments near and at the shelf break (shelf‐edge deltas), whereas other lobes did not reach the coeval shelf break before retreating landward or being abandoned. Shelf‐margin mapview morphology changes from linear to convex‐outward in the northern part of the study area where shelf‐edge deltas were focused. Location and character of shelf‐edge deltas also had significant impact on along‐strike variability of margin progradation and shelf‐edge trajectory. Total late‐middle and late Miocene margin progradation is ca. 13 km in the south, where there were no shelf‐edge deltas, vs. ca. 34 km in the north where shelf‐edge deltas were concentrated. In the central area, the deltas were arrested and accumulated a few kilometres landward of the shelf break, resulting in an aggradational shelf‐edge trajectory, in contrast to the more progradational trajectory farther north. This illustrates a potential limitation of shelf‐edge trajectory analysis: only where shelf‐edge deltas occur, there is sufficient sediment available for the shelf‐edge trajectory to record relative sea‐level fluctuations reliably. Small‐scale (ca. 400 m wide) incisions were already conspicuous on the coeval slope even before deltas reached the shelf break. However, slope gullies immediately downdip from active shelf‐edge deltas display greater erosion of underlying strata and are wider and deeper (>1 km wide, ca. 100 m deep) than coeval incisions that are laterally offset from the deltaic depocenter (ca. 0.7 km wide, ca. 25 m deep). We interpret this change in slope‐gully dimensions as the result of greater erosion by sediment gravity flows sourced from the immediately adjacent shelf‐edge deltas. Similarly, gullies also incised further (up to 6 km) into the outer shelf in the region of active shelf‐edge deltas.  相似文献   

6.
An 18.5 m thick shale sequence of Norian-Rhaetian age is described from the Bohemanfiya-Syltoppen area (north of Isfjorden, central Spitsbergen). Lithological, petrographical and palynological analyses show that the sequence represents a marginal development of the lower part of the Wilhelmeya Formation. The depositional history at the Triassic-Jurassic transition is discussed in the light of this new evidence. The Wilhelmøya Formation was probably deposited during a weak marine transgression over an area of low relief. Low sediment supply and current and wave reworking of the sediments characterized the depositional conditions.  相似文献   

7.
As many as 2500 interdune lakes lie within the Nebraska Sand Hills, a 50000 km stabilized sand sea. The few published data on cores from these lakes indicate they are typically underlain by less than two m of Holocene lacustrine sediments. However, three lakes in the southwestern Sand Hills, Swan, Blue, and Crescent, contain anomalously thick marsh (peat) and lacustrine (gyttja) sediments. Swan Lake basin contains as much as 8 m of peat, which was deposited between about 9000 and 3300 years ago. This peat is conformably overlain by as much as 10.5 m of gyttja. The sediment record in Blue lake, which is 3 km downgradient from Swan lake, dates back to only about 6000 years ago. Less than two m of peat, which was deposited from 6000 to 5000 years ago, is overlain by 12 m of gyttja deposited in the last 4300 years. Crescent Lake basin, one km downgradient from Blue Lake, has a similar sediment history except for a lack of known peat deposits. Recently, a 8-km long segment of a paleovalley was documented running beneath the three lakes and connecting to the head of Blue Creek Valley. Blockage of this paleovalley by dune sand during two arid intervals, one shortly before 10500 yr BP and one in the mid-Holocene, has resulted in a 25 m rise in the regional water table. This made possible the deposition of organic-rich sediment in all three lakes. Although these lakes, especially Swan, would seem ideal places to look for a nearly complete record of Holocene climatic fluctuations, the paleoclimatic record is confounded by the effect dune dams have on the water table. In Swan Lake, the abrupt conversion from marsh to lacustrine deposition 3300 years ago does not simply record the change to a wetter regional climate; it reflects the complex local hydrologic changes surrounding the emplacement and sealing of dune dams, as well as regional climate.  相似文献   

8.
9.
The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.  相似文献   

10.
Outcrops and cores of the Sirius Group sediments were studied at Table Mountain, Dry Valleys area, Antarctica. These sediments form a surficial veneer at least 9.5 m thick. Three facies — a gravelly sandstone, a sandstone, and a sandy conglomerate — are mapped and described from 13 outcrops and three cores. The gravelly sandstone, constituting 13%of all cored material, is bimodal with matrix-supported clasts comprising 5–33%of the facies. Fabric analysis indicates that it was deposited primarily by lodgment from glacial ice but with minor elements of meltout and flow. The sandstone facies, constituting 77%of all cored material, is a well-sorted, fine- to medium-grained sand, which commonly has laminated bedding. It is predominantly a glaciofluvial deposit but has some glaciolacustrine elements. The sandy conglomerate, constituting 10%of all cored material, is a minor facies. It is massive and clast-supported. It was deposited in a high-energy environment suggestive of subglacial meltwater channels.
Sirius Group sediments at Table Mountain are the result of wet-based ice advancing and retreating over waterlain deposits. This is consistent with an advancing ice mass in climatic conditions that were warmer than present. The majority of the sediments were deposited by alpine ice following a similar pathway to the present-day Ferrar Glacier and as such the depositional environment is one that concurs with evidence of a stable East Antarctic Ice Sheet approach. At Table Mountain, the predominantly glaciofluvial and glaciolacustrine facies is inferred to represent a more distal part of the Sirius Group environment than that seen at other outcrops in the Dry Valleys.  相似文献   

11.
The subsiding Upper Klamath Lake Basin contains sediments that were continuously deposited in a shallow, freshwater lake for more than 40 000 years. Well dated by radiometric methods and containing volcanic ashes of known age, these sediments constitute a valuable paleoclimate record. Sediment constituents and properties that reflect past climatic conditions in the area include pollen, diatoms, sediment geochemistry, and sediment magnetic properties. Many of these proxy measurements are also useful for comparing natural conditions in the lake to conditions following human settlement. Because of its location, the paleoclimate record from Upper Klamath Lake is valuable for comparisons to offshore marine records and as part of latitudinal transects of paleoclimate records along the west coast of the Americas.  相似文献   

12.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

13.
Geografisk Tidsskrift—Danish Journal of Geography 110(2):337–355, 2010

In northern Greenland, the Cape Grinnell beach ridge plain offers a 9,000year multi-proxy record for isostatic recovery, storm history, and the hydrological changes related to precipitation and slope evolution. The chronology of uplifted beach ridges is constrained by ten geological 14C ages on shell and sea mammal bones and eleven upper limiting ages from archaeological sites that span the last 3,000 years. Beach ridges formed under the influence of open water storms with renewed frequency and intensity ca. 3 ka and 1 ka ago. A lack of shell may reflect cooler sea surface temperatures. The presence and absence of ice can be inferred by push-features. Three intervals of heightened precipitation produced extensive fan deltas: (a) after 9 ka BP (b) prior to 4.5 ka BP and (c) during the Little Ice Age (AD 1350–1900). Active solifluction lobes and colluvia cover beach ridge deposits that are between 9 and 7 ka old.  相似文献   

14.
随着流域和河口水利工程建设,长江河槽沉积环境发生了巨大改变,对河势演变和河槽冲淤均产生重要影响。依据长江河口河槽大面积表层沉积物采样和各河槽定点水文观测资料,分析各河槽沉积特征,探讨其影响因子及作用机制。结果表明:河槽沉积物类型以砂质粉砂和粉砂质砂分布最广,粒径分布纵向上呈自西向东减小、横向上自北向南减小趋势,河槽总体主槽粗、边滩细。涨落潮泥沙输运和沉降过程影响河槽纵向沉积分布特征,风浪作用强化了口门段河槽南北沉积环境的差异,北支、北港口门段河槽受到偏北方向风浪作用强烈,沉积物粗化明显。不同泥沙来源是造成河槽整体沉积环境差异的主导因素,南支、南港上段表现为流域来沙的沉积特征,北港、南槽、北槽则表现为流域与海域来沙的混合沉积特征,口外沉积物对口内河槽的影响主要是为口内河槽提供细颗粒物质来源。  相似文献   

15.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   

16.
At high‐latitude continental margins, large‐scale submarine sliding has been an important process for deep‐sea sediment transfer during glacial and interglacial periods. Little is, however, known about the importance of this process prior to the arrival of the ice sheet on the continental shelf. Based on new two‐dimensional seismic data from the NW Barents Sea continental margin, this study documents the presence of thick and regionally extensive submarine slides formed between 2.7 and 2.1 Ma, before shelf‐edge glaciation. The largest submarine slide, located in the northern part of the Storfjorden Trough Mouth Fan (TMF), left a scar and is characterized by an at least 870‐m‐thick interval of chaotic to reflection‐free seismic facies interpreted as debrites. The full extent of this slide debrite 1 is yet unknown but it has a mapped areal distribution of at least 10.7 × 103 km2 and it involved >4.1 × 10km3 of sediments. It remobilized a larger sediment volume than one of the largest exposed submarine slides in the world – the Storegga Slide in the Norwegian Sea. In the southern part of the Storfjorden TMF and along the Kveithola TMF, the seismic data reveal at least four large‐scale slide debrites, characterized by seismic facies similar to the slide debrite 1. Each of them is ca. 295‐m thick, covers an area of at least 7.04 × 103 km2 and involved 1.1 × 10km3 of sediments. These five submarine slide debrites represent approximately one quarter of the total volume of sediments deposited during the time 2.7–1.5 Ma along the NW Barents Sea. The preconditioning factors for submarine sliding in this area probably included deposition at high sedimentation rate, some of which may have occurred in periods of low eustatic sea‐level. Intervals of weak contouritic sediments might also have contributed to the instability of part of the slope succession as these deposits are known from other parts of the Norwegian margin and elsewhere to have the potential to act as weak layers. Triggering was probably caused by seismicity associated with the nearby and active Knipovich spreading ridge and/or the old tectonic lineaments within the Spitsbergen Shear Zone. This seismicity is inferred to be the main influence of the large‐scale sliding in this area as this and previous studies have documented that sliding have occurred independently of climatic variations, i.e. both before and during the period of ice sheets repeatedly covering the continental shelf.  相似文献   

17.
The Five Islands of south central Louisiana are piercement-type salt domes uplifted from several kilometers depth as the surrounding strata experiences regional subsidence. In general, the domes are nearly circular in plan with maximum land surface elevations 23–52 m asl. Geomorphic evidence of salt-induced uplift includes surface lineations, aligned gullies, excessively steep land surface topography, and shear fractures in surficial sediments. Evidence of subsidence includes sinkhole ponds a few hectares in area, broad topographic saddles over tens of hectares in size, and kilometer-scale collapse structures.On each of the Five Islands, Peoria Loess and silty colluvium bury a paleosol developed in the Late Pleistocene Prairie Complex of the Lower Mississippi Valley. The loess represents a single genetic unit of eolian origin, is typically thickest on lower side slopes, and is thin or absent on ridge crests. The silty colluvium around the perimeter of the islands is a reworked loess derived from higher elevations. Shear fractures with high-angle average dips occur in both Peoria Loess and the Prairie Complex. Conjugate shear pairs probably develop from extensional stress associated with vertical uplift of the underlying salt.Prairie Complex deposition and initial soil development in a low-relief alluvial plain of the Mississippi River predates the latest emergence of the Five Islands. Loess and colluvial stratigraphy indicate that the domes were emergent during loess deposition. Gully incision, shearing of Quaternary sediments, and the distribution of colluvium indicate continued uplift after loess deposition. Sinkholes and collapse structures are influenced by salt dissolution and corrasion, whereas broad subsidence areas and topographic saddles form over areas of structural weakness within the salt.Five Islands landscape evolution is controlled by the interaction of driving and resisting forces that operate over various time scales. Diapiric uplift is a driving force of net upwards motion, and the external and internal salt dome hydrology are driving forces of solution and corrasion. The structure and lithology of the internal salt stocks and the surrounding sediments are heterogeneous and have variable strength. Collectively, this interaction produces both uplift and subsidence features across the salt dome landscape.Resource use at the Five Islands correlate with instability of both underground facilities and the surface landscape. Uplift of the Five Islands has continued since at least the Late Pleistocene, is probably still active at present, and periods of tectonic and geomorphic instability are possible in the future. Sediments overlying salt domes record discrete periods of surface uplift and periods of episodic and incremental subsidence that is common where salt domes pierce surficial sediment. The rate, magnitude, and pattern of landscape modification by salt domes have implications for the safe utilization of mineral extraction and geostorage facilities. Geomorphic evaluation of salt dome landscapes can help to develop policies that ensure safe salt dome utilization. Salt dome resource planning should include detailed characterization of internal and external stratigraphy and structure; modeling of geomorphic, soil and rock mechanic, and hydrologic processes; routine and emergency planning at operating facilities; and closure and post-closure plans.  相似文献   

18.
Kråkenes faces the open sea on the west coast of Norway. During the Younger Dryas a cirque glacier deposited a large outer and a smaller inner moraine in a cirque at the site and melt-water entered a small lake depositing glaciolacustrine sediments. The glaciolacustrine succession can be divided into three sub-units corresponding to the advance, the still-stand and the retreat phases of the glacier. The sediment succession contains both varves and other types of rhythmites, the latter being mainly deposited as turbidity underflows caused by localized slumping events. Lee-side accumulation of snow by wind and avalanching into the cirque was crucial to form and maintain the cirque glacier once summer temperatures were low enough. At maximum, the glacier likely was in equilibrium with climate. The initial retreat from the maximum position might have been triggered by fall-out of volcanic ash from Iceland, but the continued retreat was due to increased ablation season temperatures. The most rapid change in climate at the Younger Dryas/Preboreal transition occurred after the cirque glacier had melted away completely.  相似文献   

19.
For the first time, a sediment core spanning the entire Holocene has been analysed from Fiji. The 6 m core was obtained from the floor of an ancient coastal lagoon (palaeolagoon) adjacent to Bourewa, the site of the earliest known human settlement in this island group. The basal sediments, just above bedrock, date from 11 470 cal bp. A major transition occurs around 8000 cal bp where marine influences on palaeolagoon sedimentation increase sharply. Full shallow-water marine conditions are attained around 4630 cal bp and last until 3480 cal bp after which there is a regressive phase. The results agree with the area-specific predictions of sea level in the ICE-4G model, particularly in the timing of the highstand. In addition, the results support the ideas (a) that early human colonisation of Fiji occurred during the late Holocene regression, (b) that the first inhabitants of Bourewa utilised both nearshore marine (reefal) and brackish lagoon food sources, and (c) that the abrupt human abandonment of the area around 2500 cal bp could have been prompted by a reduction in these resources driven largely by sea-level fall.  相似文献   

20.
The Hanaupah-Fan Shoreline Deposit (HSD) is an as yet undescribed occurrence of shoreline sediments of late Pleistocene Lake Manly in Death Valley, California. It is located in the southern part of Death Valley, at the northeastern periphery of Hanaupah Fan. The HSD is a gently sloping, WSW-ENE elongated ridge, about 600 m long, 165 m wide and 8 m high. Its surface extends from -12 to +28 m in elevation, i.e. it has a vertical range of 40 m. We interpret the deposit as a sediment body that extended from the Hanaupah Fan east into the lake. Rising lake level, and waves approaching both from the north and south eroded fan materials, and produced a sediment body with a complex architecture. Fetch for waves approaching from either direction was about 40 km. The sedimentary inventory consists of cross-stratified gravel beds of various size ranges, dipping towards the north, south, and east, and of horizontal berm gravel beds, and horizontal silt layers. A discordant gravel layer covers the entire surface of the deposit, probably produced by wave action during the last phase of lake regression. This uniform gravel layer forms a surface that is distinctly different from the surrounding fan surfaces. It is relatively fine grained, much better sorted, and densely packed. Rock varnish is very well developed, and imparts a dark color to the surface, which makes it easily recognizable on aerial photographs. No absolute age date is available as yet, but circumstantial evidence places the formation of the deposit at the peak of marine isotope stage 2 (Wisconsinan/Weichsellian glacial maximum)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号