首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.  相似文献   

2.
洞庭湖的演变及其整治   总被引:21,自引:2,他引:19  
杨达源 《地理研究》1986,5(3):39-46
本文指出洞庭湖发育的地质构造基础是新第三纪以来洞庭盆地的拗陷沉降。晚更新世末期,洞庭湖区为河网切割的波状平原。全新世以来,先是顺左河槽谷地发育河川型“沉溺湖”。近几百年来,主要由于四口分流携入大量泥沙在湖区北部淤填,形成宽广的漫滩平原,并导致西部入湖的水流在湖区绕行及在湖区南部出现湖面的扩张。根据目前情况,作者认为解决水流在湖区的绕行问题是洞庭湖实施整治的关键。  相似文献   

3.
洞庭湖年径流泥沙的演变特征及其动因   总被引:18,自引:2,他引:16  
通过对洞庭湖1951~1998年径流泥沙演变过程及其驱动力的全面分析表明, 径流泥沙关系密切, 其相关系数r = 0.9013。年径流量、年输沙量总体均呈同步减少趋势, 在演变过程中表现出明显的阶段性。由于湘、资、沅、澧四水流域产水量大, 森林覆盖率达52%以上, 连年兴建的水利工程及工农业、生活用水量的增加, 未能对四水河流水文特征产生根本性的影响, 其入湖径流泥沙基本处于稳定状态, 故没有对湖泊径流泥沙的演变造成深刻影响。而由长江中游河段的调弦口堵口, 下荆江系统裁弯和葛洲坝截流所引起的3次江湖水沙关系调整, 即是导致洞庭湖径流泥沙缓减速减的主动因子。  相似文献   

4.
基于Copula函数的洞庭湖流域水沙丰枯遭遇频率分析   总被引:1,自引:0,他引:1  
周念清  赵露  沈新平 《地理科学》2014,34(2):242-248
受人类活动的影响,水沙灾害事件相继发生,对人们的生产、生活造成了威胁。以洞庭湖流域代表性水文站的年径流量和年输沙量系列数据为基础,应用P-III型曲线分别拟合并求得“松滋口、太平口、藕池口”三口入湖、“湘江、资江、沅水、澧水”四水入湖和城陵矶站出湖年径流量、年输沙量的边缘分布函数,再采用水文事件遭遇分析中广泛应用的Copula函数,建立洞庭湖流域水沙联合分布模型,分析洞庭湖流域水沙丰枯遭遇频率。研究结果表明洞庭湖三口、四水和城陵矶站的水沙丰枯遭遇频率关系与洞庭湖流域的水沙运动有密切联系,运用该水沙耦合模型可以为洞庭湖流域防洪减灾提供重要的理论依据。  相似文献   

5.
三峡工程建设背景下的洞庭湖区治水方略探讨   总被引:8,自引:1,他引:7  
贺清云  朱翔 《地理研究》2003,22(2):160-168
在长江三峡工程建设的大背景下,本文分析了洞庭湖区的水灾减灾机制,探讨了洞庭湖区的治水方略,提出应充分发挥三峡水库的调蓄功能,协调江湖关系,改善冲淤关系,加强水利工程建设,实现三峡水库与湖南四水水库的优化调度  相似文献   

6.
特枯水情对长江中下游悬浮泥沙的影响   总被引:3,自引:0,他引:3  
基于长江中下游气象资料、历史水沙资料和2006 年10 月现场水沙观测资料, 分析了 典型枯水年大通站的月均径流量和输沙率特征、2006 年特枯水情产生的气候背景以及对长江中下游含沙量和悬沙粒径产生的影响。分析表明, 枯水年长江干流输沙量有显著的减少, 2006 年特枯水情下大通站汛期输沙量仅占多年平均值(1985-2000 年) 的19.8%。在特枯水情 和三峡工程蓄水的背景下, 2006 年10 月长江中下游含沙量平均为0.057 kg/m3, 只占 2003-2005 年10 月平均值的20.6%。2006 年10 月长江中下游悬沙中值粒径平均为4.8 µm, 悬沙中值粒径只占多年平均值的26.3%, 占近期平均值的41.8%。含沙量、悬沙粒度和中游 河床冲淤特性的综合分析表明, 城陵矶-湖口河段水沙垂向交换强, 是三峡兴建以后近期河 道调整频繁的河段。洞庭湖和鄱阳湖对长江干流含沙量的贡献较大, 尤以鄱阳湖的贡献最大, 长江中下游其他支流对长江干流含沙量的贡献较小。汉江和巢湖对长江中下游悬沙粒径的影响相对较大, 而洞庭湖和鄱阳湖则对悬沙粒径的影响相对较小。  相似文献   

7.
人类活动对鄱阳湖泥沙收支平衡的影响   总被引:2,自引:1,他引:1  
以鄱阳湖流域内的赣江、抚河、信江、饶河和修水(五河)和鄱阳湖为研究对象,利用水文控制站的水文资料,分析了各流域内主要河流的入湖泥沙和鄱阳湖出湖泥沙特征,对鄱阳湖泥沙收支平衡进行了分析。结果表明:1955~2010年五河总入湖泥沙811.69 Mt,其中赣江(占59.7%)>信江(占13.7%)>修河(占10.2%)>抚河(占9.7%)>饶河(占6.7%);径流量是影响入湖输沙量的最主要因素,入湖泥沙与入湖径流的季节特征一致;水库的蓄水拦沙作用是五河入湖泥沙下降的主要原因,但水库对入湖泥沙的影响强度与水库库容和集水区的植被覆盖状况有关;植被覆盖变化对赣江、抚河、饶河和修河的入湖输沙量的影响明显;1955~2010年,鄱阳湖总出湖泥沙560.10 Mt,其中1955~2000年出湖泥沙量呈降低趋势,但受鄱阳湖采砂影响,2001年以来出湖泥沙显著增加;丰水季长江水对鄱阳湖的顶托和倒灌,使出湖泥沙与出湖径流在时间上不同步;三峡工程的运行改变了(长)江(鄱阳)湖之间的水动力关系,长江倒灌泥沙显著减少;受鄱阳湖采砂的影响,鄱阳湖泥沙平衡系统由净沉积转变为净侵蚀,1955~2000年入湖泥沙大于出湖泥沙,年均泥沙沉积约为1.41 mm;2001~2010年出湖泥沙大于入湖泥沙,加上采砂输出沙量,2001~2010年鄱阳湖泥沙净减少2 213.65 Mt。  相似文献   

8.
本文利用清光绪22年以来17个时段的多种历史地图和航天航空遥感数据,采用遥感解译、数据统计分析与历史对比方法,分析清末以来洞庭湖区通江湖泊面积的时序变化,探究空间演变特征。结合水利部门发布的典型年份监测数据,检验了遥感获取的湖泊面积精度,误差仅为0.62%。结果显示:洞庭湖通江湖泊面积从1896年的5216.37 km2减少到2019年的2702.74 km2,萎缩率为48.19%。1949年前的53年为明显萎缩期,年均萎缩15.66 km2;20世纪50年代为陡崖式萎缩期,年均萎缩139.05 km2;20世纪60—70年代为快速萎缩期,年均萎缩21.66 km2;1980年以来为基本稳定期,年均萎缩0.13 km2,面积仅减少了5.10 km2。就具体湖泊而言,东洞庭湖是各通江湖泊中面积萎缩最大的湖泊,减幅为922.60 km2;其次是目平湖,减幅为588.05 km2;再次是南洞庭湖,减幅为448.37 km2;七里湖的面积变化很小,但经历了先扩张后萎缩的过程。1998—2002年实施“退田还湖”工程,洞庭湖面积增加了10.50 km2。总体而言,清末以来洞庭湖区通江湖泊的演变主要表现为大通湖的封闭析出、整修南洞庭湖的湖垸置换与南迁、围垦西洞庭湖的局部残存、东洞庭湖的三面合围以及1998年特大洪灾后有限的“退田还湖”。本文为长江流域生态修复和环境保护战略提供了客观资料和技术支撑。  相似文献   

9.
洞庭湖与长江水体交换能力演变及对三峡水库运行的响应   总被引:6,自引:0,他引:6  
运用洞庭湖区与长江干流相关控制站1951-2010 年实测水文数据, 在分析江湖水力关系的基础上, 从不同时间尺度分析江湖水体交换能力的演变特征及其对三峡水库运行的响应。结果表明:① 7-9 月长江荆南三口对洞庭湖的补给能力较强, 1-3 月洞庭湖对长江的补给能力较强;② 江湖水体交换系数具有明显的年代际波动, 其中1951-1958 年、1959-1968 年荆南三口对湖泊的补给能力较强, 而2003-2010 年湖泊对长江的补给能力增强;③ 三峡水库运行后无论是典型年还是在水库不同调度方式运行期, 三口分泄能力减弱, 入湖水量减少, 而因四水入湖水量占绝对优势, 湖泊对长江的补给能力明显增强;④ 尽管影响江湖水体交换能力的因素极为复杂, 但从总体上讲, 除受流域降水波动影响外, 江湖水体交换能力在不同时间尺度上的演变特征及其过程均随着江湖水体交换量的变化而变化, 说明江湖水体交换能力强度与江湖水体交换量之间存在着彼此消长的关系。  相似文献   

10.
碱性磷酸酶能催化有机磷分解释放正磷酸盐,对湖泊治理研究具有生态学意义。以徐州市云龙湖为研究区,于2008年9月4日在云龙湖东、西两个区域共布设20个采样点,测定了沉积物的碱性磷酸酶活力,研究沉积物中碱性磷酸酶的分布及其活力与营养盐(总氮和总磷)的关系。结果表明,云龙湖东、西区沉积物的碱性磷酸酶活力的最大值都出现在沉积物表层(0~3cm层),最小值都出现在底层(7~11cm层);云龙湖东区上覆水中总氮和总磷含量高于西区;云龙湖东区沉积物中总磷和总氮含量的最大值都出现在底层,而西区则都出现在表层;东、西区沉积物中层(4~6cm层)的碱性磷酸酶活力都与其总磷含量显著正相关(东区:r=0+776,n=10,P〈0.01;西区:r=0.642,n=10,P〈0.05),研究区沉积物中层是碱性磷酸酶的活跃层;东区沉积物底层的碱性磷酸酶活力与其总氮含量显著正相关(r=0.838,n=10,P〈0.01);东、西区沉积物表层的碱性磷酸酶活力与其总磷和总氮含量不相关。  相似文献   

11.
长江中上游土壤自然侵蚀量及其估算方法   总被引:7,自引:2,他引:7  
景可  张信宝 《地理研究》2007,26(1):67-74
首先阐述了土壤侵蚀可分为自然侵蚀和人为加速侵蚀,自然侵蚀是自地球形成以来就普遍存在的一种自然现象;继而从夷平面、河流阶地、沉积盆地等侵蚀和堆积地貌形迹论述了第四纪以来长江中上游土壤自然侵蚀存在的佐证事实;在此基础上,依据侵蚀沉积相关原理,利用沉积物的厚度、面积和沉积时段分别计算了洞庭湖流域、鄱阳湖流域和古云梦泽流域全新世以来的自然侵蚀量,它们分别为264.2t/km2 · a、 312.5t/km2 · a和297.0t/km2 · a;同时,本文还辅以川西和三峡地区的对比实验小区资料,现代自然侵蚀量分别为342.0t/km2 · a、 75~270t/km2 · a佐证历史自然侵蚀量。长江上中游区域的自然侵蚀量介于264.0t/km2 · a ~342.0t/km2 · a之间。流域平均自然侵蚀量是现代侵蚀量的50%~60%之间;本研究成果有助于对长江中上游现代土壤侵蚀的属性、演变过程有一个科学的认识;同时可为生态保护、环境友好建设目标提供背景参照物。  相似文献   

12.
随着流域和河口水利工程建设,长江河槽沉积环境发生了巨大改变,对河势演变和河槽冲淤均产生重要影响。依据长江河口河槽大面积表层沉积物采样和各河槽定点水文观测资料,分析各河槽沉积特征,探讨其影响因子及作用机制。结果表明:河槽沉积物类型以砂质粉砂和粉砂质砂分布最广,粒径分布纵向上呈自西向东减小、横向上自北向南减小趋势,河槽总体主槽粗、边滩细。涨落潮泥沙输运和沉降过程影响河槽纵向沉积分布特征,风浪作用强化了口门段河槽南北沉积环境的差异,北支、北港口门段河槽受到偏北方向风浪作用强烈,沉积物粗化明显。不同泥沙来源是造成河槽整体沉积环境差异的主导因素,南支、南港上段表现为流域来沙的沉积特征,北港、南槽、北槽则表现为流域与海域来沙的混合沉积特征,口外沉积物对口内河槽的影响主要是为口内河槽提供细颗粒物质来源。  相似文献   

13.
许炯心 《中国沙漠》2014,34(6):1641-1649
“十大孔兑”来沙造成黄河干流强烈淤积.为了通过流域治理来减轻泥沙灾害,研究“十大孔兑”侵蚀产沙过程具有重要意义.基于1960—2005年的河流输沙量、径流量和降雨量资料,运用统计方法进行了研究.结果表明:“十大孔兑”输沙量高度集中于几个大水大沙年份,其余年份对46年总输沙量的贡献很小.最大1年、最大3年、最大5年和最大10年的累积输沙量分别占到46年总输沙量的21.26%、37.18%、47.92%和69.29%.1960—1991年和1992—2005年两个时段相比,后一时段输沙量年均值减少了37%.这一差异可以用暴雨特征的差异和下垫面(如植被)的变化来解释.1991年以后,年降水量无明显变化,但最大1日降雨量在p<0.10的水平上呈现减小的趋势.虽然20世纪90年代西柳沟并未大规模实施水土保持治理,但由于农村富余劳动力转移,对土地的压力减轻,对植被的破坏大大减弱,使得植被逐渐恢复,NDVI呈增大趋势,因而侵蚀产沙减弱.“十大孔兑”产沙模数具有明显的空间分异特征,从西向东增大,在西柳沟达到最大值,然后再减小.流域自然地理因素具有明显的变化,从西向东,沙尘暴频率减小,降雨量增大.沙丘类型也发生了变化,由以流动沙丘为主变为以半固定沙丘为主,进入河道风沙的输沙强度减小.另一方面,水力驱动的侵蚀和泥沙输移从西向东增强.上述两种作用叠加的结果,在区域中部西柳沟附近出现了侵蚀产沙的峰值区.  相似文献   

14.
The global cycling of anthropogenic trace metals intensified during the twentieth century, impacting aquatic systems throughout the world. There are, however, few quantitative records showing the history of this contamination in large rivers. Here we present a well-dated sedimentary record of trace metal accumulation in Lake St. Croix, a natural riverine lake on the St. Croix River (Minnesota and Wisconsin, USA), revealing the history of heavy metal inputs to the river over the past 200 years. Concentrations of Hg, Pb, Ag, Cd, Cr and Zn and stable Pb isotopes were measured in eight 210Pb-dated sediment cores collected from profundal depositional areas throughout the lake. Time trends of trace metal concentrations and accumulation rates differed greatly between the upper lake (above Valley Creek) and the lower lake, reflecting contrasting sediment sources along the flow axis of the lake. For most of the study period (1800–2000 AD), sediment deposited throughout the lake derived almost exclusively from the suspended sediment load carried by the main-stem river into the lake. From 1910 through 1970, however, large inputs of eroded soils and stream channel sediments from side-valley tributaries resulted in greatly increased sediment and trace metal accumulation in the lower lake. Anthropogenic accumulation rates of Hg, Pb, Cd, Zn, and Ag in the upper lake correlate well with those from Square Lake, a small, relatively undisturbed nearby lake that has received trace metal inputs almost exclusively via atmospheric deposition. The similarity of these records suggests that atmospheric deposition was primarily responsible for trace metal accumulation trends in upper Lake St. Croix. Trace metal accumulation in the lower lake was also strongly influenced by atmospherically derived inputs, but metal contributions from native soils were important, as well, during the period of elevated sediment inputs from side-valley tributaries. Concentrations and accumulation rates of trace metals in both upper and lower lake sediments have decreased substantially since the 1970s due to decreased atmospheric inputs and sediment loadings, but accumulation rates remain well above pre-settlement values. Metal inputs to Lake St. Croix have been far lower than those to nearby Lake Pepin, located on the Mississippi River downstream of the Minneapolis-St. Paul metropolitan area, but there nevertheless remains a clear record of anthropogenic impact on the relatively pristine St. Croix River.  相似文献   

15.
薛春汀  周良勇 《地理研究》2010,29(11):1961-1970
现在的洪泽湖和淮河中游河道不断淤高,致使淮河中游洪涝不断。入洪泽湖后淮河水主要流入长江。而苏北北部地区需要水,因入海泥沙数量太少而致海岸侵蚀问题不能根本解决,那里需要淮河的泥沙。为改变这种不合理的格局。在洪泽湖北岸和浅水区开挖与洪泽湖分离的河道,连接完成远期工程的淮河入海水道和拓宽、挖深的淮沭河—北六塘河—新沂河水道,使淮河水沙只经过这两条水道到达黄海,改变淮河水沙不合理的资源分配。新水道路程短,比降大,使洪泽湖和淮河中游河道不再淤高,并将进一步使淮河中游水道刷深,减轻淮河中游洪涝灾害,并为洪泽湖湖底高程降低创造条件。通过分析现在淮河的输沙量、输沙模数,与历史时期和其他流域对比,认为连云港至射阳河口这段海岸将改变为北部稳定,南部缓慢进积,形成新的淮河三角洲,彻底解决苏北海岸侵蚀问题。  相似文献   

16.
Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high‐energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W‐basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off‐shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.  相似文献   

17.
三峡水库运行下洞庭湖盆冲淤过程响应与水沙调控阈值   总被引:4,自引:0,他引:4  
以1951-2011 年洞庭湖区及荆江段干流主要控制站实测径流输沙量资料为依据,分析三峡水库不同蓄水阶段及不同调度方式下洞庭湖盆冲/淤响应,并提出上游来水来沙调控阈值。结果表明:① 荆南三(四)口流量与枝城站流量、荆南三(四)口输沙率存在极显著正相关(p < 0.0001),决定系数r2分别为0.859 及0.895。② 与三峡水库蓄水运用前(1999-2002)相比,一、二期蓄水阶段及全面试验性蓄水阶段(2008.10-2011.12)洞庭湖盆年均冲淤量由+4796.4×104 t 依次递减为+684.1×104 t、+449.8×104 t 及-559.6×104 t,湖盆冲淤率由+70.25%分别降至+31.13%、+23.56%及-42.64%。③ 预泄调度及蓄水调度期,湖盆泥沙均由以淤积为主转变为以冲刷为主,防洪补偿调度期湖盆泥沙表现为淤积,而在补水调度运用期则表现为冲刷。④ 洞庭湖盆处于冲/淤临界平衡状态时的荆南三口平均流量、输沙率及含沙量分别为970.81 m3/s、466.82 kg/s 及0.481 kg/m3。并认为,为增强湖泊调蓄功能,必须进一步优化三峡水库调度方式,合理调控下泄水沙量。  相似文献   

18.
Lake Simcoe is a large lake 45 km across and in places over 30 m deep, located between Lake Huron and Lake Ontario, in the glaciated terrain of southern Ontario, Canada. Seismostratigraphic analysis of high-resolution seismic reflection profiles, together with lakebed sediment sampling and pollen study, revealed distinctive sequences in the sediments beneath Lake Simcoe, Ontario. A surface unit (Blue Sequence) of soft Holocene mud (low-amplitude surface reflection, discontinuous parallel internal reflections) lies in the deeper basins of the lake. The underlying unit (Green Sequence) is characterized by high-amplitude parallel internal reflections; basal sediments of this sequence consist of clay rhythmites with dropstones. The Green Sequence was deposited by lacustrine sedimentation in proglacial Lake Algonquin; sedimentation persisted until the basin was isolated from other glacial lakes at about 10 14C ka at the Penetang post-Algonquin phase. Subsequent erosion of the uppermost portion of the Green Sequence is attributed to wave action in a low-level early Holocene lake, possibly closed hydrologically and coeval with closed lowstands in the Huron and Georgian Bay basins. Two sequences with high-amplitude surface reflections and chaotic internal reflections (Purple and Red Sequences) lie below the Green Sequence. Northeast-southwest trending ridges, tens of metres in height, on the Red Sequence (the lowermost of these two units) are interpreted to be drumlins. An erosion surface descends into narrow valleys 50–80 m deep beneath the lake in bays to the west and south of the main lake basin. These depressions are interpreted as subglacial tunnel channels cut by rapid flows of meltwater. The sediments of Purple Sequence are interpreted as channel-fill sediments rapidly deposited during waning stages of the meltwater drainage. The Red Sequence is correlated with the Newmarket Till of the last glacial maximum identified beneath the Oak Ridges Moraine to the south.  相似文献   

19.
40年来长江九江河段河道演变及其趋势预测   总被引:8,自引:4,他引:4  
利用地理信息系统(GIS)与数字高程模型(DEM)技术定量模拟40年来九江河段冲淤演变过程,结果表明: 1963~1972年总体表现为淤积,淤积量为6.505 hm3,平均淤积速率为0.65 hm3/a。1972~2002年总体表现为冲刷,冲刷量为20.720 hm3,平均年冲刷率为1.036 hm3/a。1963~2002年九江河床总体表现为冲刷,冲刷量为14.977 hm3。2003年与1963年比较,河床淤积区域主要分布在九江河道上段近南岸区域,中下段河道的中间区域;冲刷区域主要分布在九江河道上段的中间及近北岸区域,中下段河道两岸的近岸区域。中下段南岸的不断刷深和南偏对九江的防洪带来更大的压力。  相似文献   

20.
Sediment cores were collected for pore-water analysis from the eastern end of Devils Lake, located in northeastern North Dakota, to determine diagenetic reactions occurring in surficial bottom sediments and to evaluate the impact of these reactions on chemical concentrations in the overlying lake water. Sediment pore waters are enriched in major ions and nutrients relative to lake water. The principal sources of major ions to pore water are saline sediments located in the upper 1 m of bottom sediment. The principal source of titration alkalinity and nutrients to pore water is microbial decomposition of sedimentary organic matter by sulfate reduction. Sediment pore waters in the eastern part of Devils Lake have higher major-ion concentrations and solute-flux rates than the sediment pore waters in the central part of the lake. In contrast, sediment pore waters in the central part of Devils Lake have significantly higher nutrient concentrations and solute-flux rates. Major-ion concentrations and solute-flux rates in sediment pore water increase from west to east. These trends indicate that bottom-sediment diagenetic processes are, in part, responsible for the observed concentration gradient in the lake. The higher nutrient concentrations and the higher nutrient diffusional-flux rates in Main Bay are the result of more labile sedimentary organic matter and the occurrence of sulfate reduction. Environmentally-reactive trace-metal concentrations (Cu, Pb, Zn, and Fe) in bottom sediments decrease from west to east with distance from the surface-water sources and with increasing surface-water salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号