首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The influence of the Kuroshio flow on the horizontal distribution of North Pacific Intermediate Water (NPIW) in the Shikoku Basin is examined based upon observational data collected by the training vessel “Seisui-maru” of Mie University together with oceanographic data compiled by the Japan Oceanographic Data Center (JODC). Although it has been stated that the NPIW with salinity less than 34.2 psu had been confined to the south of the Kuroshio main axis along the PT (KJ) Line on the eastern side of the Izu Ridge, a similar tendency can be detected on the western side of the Izu Ridge. Namely, the NPIW on the southern side of the Kuroshio main axis in the Shihoku Basin does not indicate a tendency to go northward across the Kuroshio main axis without an increase in salinity of more than 34.2 psu. However, the JODC data show that less saline water (<34.2 psu) was present on the northern side of the Kuroshio main axis south of the Kii Peninsula in May 1992. Satellite observed sea surface temperature (SST) data suggested that the Kuroshio approaches the Kii Peninsula after forming a small meander off Kyushu and some intrusions of the NPIW into the northern coastal side of the Kuroshio main axis occurred in this period. It is concluded that intrusion of the NPIW with salinity less than 34.2 psu to the northern coastal side through the Kuroshio main axis occurred during the decay period of the small meander path in May 1992. Based on these observational results, the source of the salinity minimum water on the northern coastal side of the Kuroshio main axis is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
邹广安 《海洋科学》2016,40(2):151-158
日本南部黑潮路径变异对北太平洋地区的气候和环境具有显著的影响,对黑潮路径变异的研究具有重要的意义。本文利用POM(Princeton Ocean Model)数值模式模拟了日本南部黑潮的路径变异情况,分析了黑潮大弯曲路径形成的可能机制。研究结果表明,当黑潮处于非大弯曲路径时,相对位势涡度的平均值呈现递减趋势,说明日本南部低位势涡度水在不断积累,这样会使得四国再循环流的强度增强,迫使黑潮保持平直路径,同时,近岸黑潮垂直流速剪切增大,斜压不稳定性的作用也逐渐增大;当黑潮从非大弯曲路径向大弯曲路径过渡时,再循环流强度的减弱会导致黑潮的流速剪切减小。根据海表高度异常场以及海洋上层流场信息发现,近岸黑潮附近的气旋涡会随着再循环流区域反气旋涡的东侧向南运动,最终导致黑潮大弯曲的发生。分析涡流的能量,结果显示,黑潮大弯曲路径的形成与斜压不稳定性密切相关。  相似文献   

3.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   

4.
The coastal sea level propagating westward along the south coast of Japan and the impact of the disturbance on the generation of the Kuroshio small meander have been examined. The propagation occurs in sea level variations for periods shorter than 10 days and is remarkable for periods of 4–6 days. Characteristics of the 4–6 day component have been studied using the extended empirical orthogonal function (EEOF). The first and second modes of EEOF are almost in-phase throughout the south coast of Japan. The higher four modes of EEOF are significantly excited when the Kuroshio takes the non-large-meander path, and propagate westward with phase speeds of 2.8 m s−1 (third and fourth modes) and 1.6 m s−1 (fifth and sixth modes) in the Kuroshio region west of Mera in the Boso Peninsula. The analysis shows that more than 70% of the small meanders generate in two months after a significant propagating disturbance reaches south of Kyushu when the velocity of the Kuroshio is high. This effect of coastal disturbance is examined by numerical experiments with a 2.5-layer model in which coastal disturbance is excited by vertical displacement of the upper interface. The result is that offshore displacement of the Kuroshio occurs southeast of Kyushu only in the case of significant upward displacement of the interface under the influence of a high Kuroshio velocity. The significant coastal disturbance, which is associated with upward displacement of the density interface, and a high Kuroshio velocity can therefore be important factors in generating small meanders.  相似文献   

5.
Chaotic Advection of the Shallow Kuroshio Coastal Waters   总被引:1,自引:0,他引:1  
The shallow coastal water of the Enshu-Nada Sea (ENSW) recirculates regardless of whether the Kuroshio path is straight or has meanders. The recirculation is formed as a result of flow separation at the sharp coastline. The outputs of a recent numerical simulation of the Kuroshio current, including case of a short-term meander caused by an anticyclonic eddy, were analysed to track the motion of the ENSW. In contrast to the steady-flow cases, the unsteady cases showed that the ENSW discharges into the Kuroshio Extension region and intrudes further north into the Kuroshio-Oyashio confluence region due to chaotic advection. Two hyperbolic stagnation points of the velocity field characterise the transport paths; one south of the Izu peninsula and the other at the Kuroshio Extension. This mechanism exists even without the Ekman drift and may play an important role in the transportation of the fish eggs and larvae from the southern Japan spawning ground to the food abundant Kuroshio-Oyashio transition zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   

7.
We examine the processes underlying the generation and propagation of the small meander of the Kuroshio south of Japan which occurs prior to the transition from the non-large meander path to the large meander path. The study proceeds numerically by using a two-layer, flat-bottom, quasi-geostrophic inflow-outflow model which takes account of the coastal geometries of Kyushu, Nansei Islands, part of the East China Sea, and the Izu Ridge. The model successfully reproduces the observed generation and propagation features of what is called "trigger meander" until it passes by Cape Shiono-misaki; presumably because of the absence of the bottom topography, the applicability of the present numerical model becomes questionable after the trigger meander passes by Cape Shiono-misaki. The generation of the trigger meander off the south-eastern coast of Kyushu is shown to be associated with the increase in the supply of cyclonic vorticity by the enhanced current velocity in the upper layer along the southern coast of Kyushu where the no-slip boundary condition is employed. Thereafter, the trigger meander propagates eastward while inducing an anticyclone-cyclone-cyclone pair in the lower layer. The lower-layer cyclone induced in this way, in particular, plays a crucial role in intensifying the trigger meander trough via cross-stream advection in the upper layer; the intensified trigger meander trough then further amplifies the lower-layer cyclone. This joint evolution of the upper-layer meander trough and the lower-layer cyclone indicates that baroclinic instability is the dominant mechanism underlying the rapid amplification of the eastward propagating trigger meander.  相似文献   

8.
Spectral properties of sea levels at Naze, Nishinoomote, Kushimoto, Uragami, Miyake-jima and HachijÔ-jima are examined for the non-large-meander (February 1964 – May 1975) and large-meander (October 1975 – December 1979) periods, and the periodicity of variation of the Kuroshio path is clarified.The large meander of the Kuroshio occurs with a primary period of about 20 years and secondary period of 7 to 8. 5 years. During the non-large-meander period, the Kuroshio alternately takes the nearshore and offshore non-large-meander paths with a primary period of 1. 6–1. 8 years. This variation is moreover composed of 110-day, around 195-day and annual periods. The 110-day variation of the Kuroshio path appears to have influence on the coastal sea levels between the Kii Peninsula and the Izu Ridge;i. e., the coastal sea levels rise and fall with one-month time lag after the Kuroshio has begun to approach and leave the Japanese coast. During the large-meander period, the 70 and 110-day variations are remarkable in sea levels south of Japan except Miyake-jima and HachijÔ-jima. The 70-day variation is highly coherent throughout the south coast of Japan; the coherent area of the 110-day variation seems to be smaller.The sea-level variations at Naze and Nishinoomote are not significantly coherent for any of the periods except for annual and semiannual cycles during both the non-large-meander and large-meander periods. That is, the sea-level variations are incoherent between the onshore and offshore sides of the Kuroshio, except for seasonal variation.  相似文献   

9.
Variations of current velocity of the Kuroshio are examined using the 1965–1983 sea-level difference between Naze and Nishinoomote, located on the offshore and onshore sides of the Kuroshio in the Tokara Strait south of Kyûshû.Interannual variations of Kuroshio velocity are large, especially at periods longer than five years and around 2.1 years. They are almost determined by those of sea level on the offshore side of the Kuroshio. They are highly coherent with the offshore sea level at periods longer than 1.7 years, and incoherent with the onshore sea level at periods longer than 2.8 years.The mean seasonal variation averaged for 19 years is at its maximum in July and at its minimum in the second half of October, with a sharp decrease in August and September. However, such a variation does not repeat every year. Amplitude, dominant period and phase are greatly different by year, and they can be roughly divided into four groups: small-amplitude group, semiannual-period group, and two annual-period groups with different phases. The only feature found in almost all years is a weak velocity from September to December.The amplitude of seasonal variation tends to be large in the formation years of the large meander (LM) of the Kuroshio and small during the LM period. It is also large in the years preceding El Niño, and diminishes remarkably in El Niño years.Kuroshio velocity in the Tokara Strait is incoherent with position of the Kuroshio axis over the Izu Ridge, but highly coherent with 70-day variations of coastal sea levels which are dominant during the LM period.  相似文献   

10.
The generation of small meanders of the Kuroshio south of Kyushu has been investigated using a high-resolution ocean general circulation model of the North Pacific Ocean. The small cyclonic meander develops in the region east of the Tokara Strait with a period of about one month, then propagates downstream along the Kuroshio path to the longitude of the Kii Peninsula, which is similar to the so-called trigger meanders for the formation of the large-meander of the Kuroshio south of Japan. It turns out that the generation of the small meander is a local phenomenon, strongly associated with anticyclonic eddies that propagate northeastward along the Kuroshio path in the East China Sea. The vorticity balance indicates that the accumulation of positive vorticity during the developing phase of the small meander occurs mainly from the balance between the stretching and the advection terms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A continuous survey examined short-term variations in the zooplankton community and physical ocean environment from the northeastern Izu Islands to Boso Peninsula in Japan. High copepod abundance and small upwellings in the surface layer and salinity minimum layer in the subsurface were observed on the north side of coastal fronts in the westernmost transect, moving southward as the Kuroshio Current left the Boso Peninsula. Thus, the salinity minimum layer might be a key factor forming upwelling and the fronts, leading to large abundance of coastal copepods off the northeastern Izu Islands. A community structure analysis of calanoid copepods revealed an intermediate belt assemblage between coastal and offshore (Kuroshio) assemblages. Copepod abundance was remarkably low and Ctenocalanus vanus dominated (nearly 37%) in the intermediate belt zone, indicating that C. vanus has a relatively high tolerance to adverse environments for calanoid copepods. As the Kuroshio Current left the Boso Peninsula, the coastal assemblage expanded in the same direction, and the intermediate belt assemblage off the northeastern Izu Islands disappeared. The largest population of Calanus sinicus was found along the two western transects off the northeastern Izu Islands (>1000 m depth), which was assumed to be transported from Sagami Bay and advanced southwestward while growing from copepodite stages CIII to CV. Larvae of C. sinicus would be an important food for fish larvae in addition to Paracalanus parvus s.l., the numerically dominant species in the coastal assemblage, and C. vanus under the adverse conditions for coastal copepods.  相似文献   

13.
This study investigates the long-term variability of the Kuroshio path south of Japan. Sensitivity experiments using a data-assimilative model suggest that the duration of the large meander (LM) strongly depends on the Kuroshio transport; specifically, low transport leads to a long duration of the LM. Actually, we find a good correlation between the duration of the past LMs and the Sverdrup transport estimated by a wind-driven linear baroclinic vorticity model. Then we explore favorable conditions for the LM and find a close relationship between the Kuroshio Extension (KE) state and the LM. That is, a precondition for the LM that the Kuroshio path on the Izu Ridge is fixed at a deep channel located around 34°N is achieved during a stable KE state. In addition, westward propagating signals with negative anomalies in the Kuroshio region and high sea-surface height (SSH) state east of Taiwan are key for generation of a small meander southeast of Kyushu that triggers a subsequent LM. The signals related to the above conditions change the upstream Kuroshio transport and velocity, which are consistent with features indicated by the former observational studies. Using reanalysis data, we construct long-time series of indices for the three conditions, which explain well the past LMs. The indices suggest that long-term non-LM states around 1970 and in the 1990s were attributed to a low-SSH state east of Taiwan and an unstable KE state, respectively.  相似文献   

14.
The mechanism of a characteristic sea level response (barotropic coastal ocean response) to wind field fluctuation around the tip of the Izu Peninsula observed during the middle of December 2000 to the middle of January 2001 was investigated based on three types of numerical experiments using the Princeton Ocean Model with various parameters. The response was characterized by the relaxation of sea level falling (rising) during eastward upwelling (westward downwelling) favorable wind regime. Analyses of quasi-realistic numerical model results in terms of the vertically integrated momentum balances and vorticity balance for the barotropic mode revealed that: 1) development/abatement of two anomalous circulations generated around the tip of the Izu Peninsula controls the sea level response through the acceleration/deceleration of a quasi-geostrophic barotropic coastal current between the circulations; 2) nonlinear vorticity advection by the Kuroshio Current and by the coastal current, coupled with vorticity diffusion, decelerates the quasi-geostrophic coastal current in the latter half of the wind regimes, which induces the relaxation of sea level rise/fall. The results of the quasi-realistic numerical experiment suggest that an analysis of the vorticity balance for the barotropic mode contributes to a better understanding of sea level responses to wind in coastal regions with strong currents and complex topography. In addition, a numerical experiment with idealized spatially uniform density stratification and a quasi-realistic wind field shows that if the Kuroshio Current had been shifted far offshore from the Izu Peninsula during the observation period, westward propagating continental shelf waves would have controlled the coastal sea level response.  相似文献   

15.
Sea surface temperature (SST) has been measured in the south of Japan using a thermometer set up in the ferry boat to investigate the characteristics of the warm water intrudes into the coastal areas from the Kuroshio. Time series analysis was applied to the SST data with satellite images and hydrographic observation data from April 1987 to September 1989. The results indicate that the warm Kuroshio water intruded into the coastal areas on the Enshu-nada and the Kumano-nada Seas intermittently with periods of about 50 and 20 days associated with the fluctuation of the Kuroshio path and the Kuroshio frontal disturbance respectively. The intrusion with a 50-day period was dominant when the Kuroshio took a stationary small meander path (B- and C-types). The warm water spread to the west at 20 cm s–1, and was estimated to have a depth of 150 m at least and supply enough heat to make up the loss due to the evaporation in the coastal area. During the straight path of the Kuroshio, it was detected that the warm water intruded into coastal areas only with a 20-day period. The warm water that intrudes with a period of 20 days spreads to the west at 25 cm s–1 in a small scale.  相似文献   

16.
The sea level difference between Kushimoto and Uragami, located to the west and east of the southern tip of the Kii Peninsula, is relatively large in periods of non-large meander path (nLMP) of the Kuroshio south of Japan in comparison with periods of large meander path (LMP). Based on this clear relationship, the sea level difference between Kushimoto and Uragami has been used as an index showing the periods of nLMP and those of LMP of the Kuroshio south of Japan. It has been pointed out that warm and saline Kuroshio water, separated from the main path of the Kuroshio, has a tendency to approach the western area off Kii Peninsula to off Muroto Peninsula in periods of nLMP, while it approaches the eastern area off Kii Peninsula to Omae-zaki in periods of LMP. On the basis of this observational evidences, the dynamic background underlaying the well-known relationship between the Kuroshio path and the sea level difference between Kushimoto and Uragami is examined in the present study, using the temperature and salinity data observed by Wakayama Prefectural Fisheries Experimental Station and Fisheries Research Institute of Mie. It is shown that deviations in vertically integrated specific volume off Kushimoto and Uragami almost equal deviations in observed sea level at Kushimoto and Uragami, respectively. It is also shown that the difference in vertically integrated specific volume between off Kushimoto and off Uragami almost equals the difference in observed sea level between Kushimoto and Uragami. As for the Kuroshio water, the high-temperature contribution is predominant for its specific volume rather than that of high salinity, which yields thermal expansion in comparison with coastal water. Because the difference in vertically integrated specific volume between off Kushimoto and off Uragami almost equals the difference in observed sea level between Kushimoto and Uragami, it is concluded that the relationship between the Kuroshio path and sea level difference between Kushimoto and Uragami is caused by the different approaching of the warm Kuroshio water between in nLMP periods and in LMP periods.  相似文献   

17.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   

18.
过去的研究认为,黑潮延伸体的年代际振荡受来自其下游的太平洋年代际振荡(PDO)相关联的信号主导,但最近的观测表明这种调控机制在2017年9月之后不再成立。与此同时,黑潮延伸体的上游即日本南部黑潮正在发生一次大弯曲事件。利用26年(1993–2018年)的卫星高度计提供的海表高度距平数据和自组织映射(SOM)方法,本文研究了日本南部黑潮与黑潮延伸体的时空模态及其因果关系。结果表明,SOM能有效地提取两个海区的典型空间模态,且它们的演变轨迹表明当日本南部黑潮处于大弯曲(离岸型非大弯曲)路径时,黑潮延伸体趋于稳定(不稳定)态。基于SOM识别得到的海表面高度距平(SLA)特征区及特征时间模态,我们进一步利用一种最近发展的定量因果分析方法研究了两个流系之间的因果关系。研究发现,当黑潮大弯曲发生时,日本南部黑潮和黑潮延伸体之间存在双向因果,但因果关键区不同。前者对后者的影响集中在纪伊半岛东南侧及黑潮延伸体“两脊一槽”区域,而后者对前者的影响则集中在黑潮延伸体“两脊一槽”区域及黑潮再循环流区域。这说明黑潮大弯曲的发展对黑潮延伸体的稳定性有重要作用,同时黑潮延伸体通过调制南部再循环流影响日本南部黑潮的路径。不同的是,当离岸型非大弯曲路径发生时,只有从日本南部黑潮向黑潮延伸体的单向因果关系,且因果性主要集中在伊豆海脊及再循环流区域。这与该时期海表高度负异常沿日本南岸不断向位于下游的黑潮延伸体再循环流的传播有关,它使得黑潮延伸体变得不稳定。  相似文献   

19.
白玉  邓增安 《海洋通报》2023,(2):138-150
日本鲭是一种重要的经济鱼类,广泛分布于西北太平洋沿岸海域,其资源和补充很容易受到环境因素的影响,尤其是在鱼类的早期生活阶段,即卵和幼体阶段。本文建立了一个基于个体的模型(Individual-Based Model,IBM)用以研究典型大弯曲期间黑潮主流、周围环流以及中尺度涡对日本鲭早期生命活动的影响。数值模拟及研究结果表明:(1)在深度分布方面,大部分个体(鱼卵或仔稚鱼)位于75 m以浅水层中,只有少部分被垂直湍流带入更深的水域。(2)在产卵场和育幼场之间的连通性方面,3-5月来自主要产卵场的个体随黑潮主流进入黑潮延伸区的渔场;6月份,主要产卵场中的个体受到黑潮大弯曲东侧的小型冷涡的影响,该冷涡阻止了其进入黑潮延伸区的渔场,并留在纪伊半岛和伊豆群岛的沿海水域。在昼夜垂直迁移(Diel Vertical Migration,DVM)这一输运方式的影响下,停留在四国岛和纪伊半岛附近的个体数量增加,处于DVM输运方式下的个体受冷涡的影响更大,增加了在海洋表面漂流的时间,无法跟随黑潮主流输送到更远的育幼场。(3)在输送距离方面,90%以内的个体进行短距离到中距离输运,在DVM输运方式下,长距...  相似文献   

20.
Flow patterns and positions of the Kuroshio in the vicinity of the Izu Ridge are clarified by analyzing hydrographic observations and daily mean sea levels at Hachijo-jima, Miyake-jima and Oshima in the period from 1964 to 1981.Correlations are calculated between differences of dynamic depth anomaly at the surface refered to 1,000 db and differences of daily mean sea level between the two islands. The datum line of the tidal station at Hachijo-jima is about 90 cm higher than that at Miyake-jima, and about 20 cm higher than that at Oshima. A clear correlation is found between the cross-section transport of the Kuroshio and the mean sea-level difference between Hachijo-jima and Miyake-jima. The sea-level difference of the flow pattern without meander off Enshu-nada (type N) tends to be larger than that of the flow patterns with meander (type A and type B). This seems to indicate that the volume transport of the Kuroshio in the meandering period is smaller than that during the straight path period. Large sudden increases or decreases in the mean sea-level difference occur when the flow pattern changes and the Kuroshio axis shifts. The frequency of occurrence of quiet periods in the sea-level difference reflect the flow pattern of the Kuroshio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号