首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160–250 m), upper slope (250–450 m), intermediate slope (450–800 m), and Derugin Basin (1450–1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats.Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area.As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.  相似文献   

2.
Hydrocarbon and brine seeps in the deep regions of the northern and western Gulf of Mexico often support populations of the bathymodiolin mussel, “Bathymodioluschildressi. In this study, we use two mitochondrial and six nuclear DNA markers to investigate relationships within the metapopulation of “B.childressi in the Gulf of Mexico from Mississippi Canyon to Alaminos Canyon over a range of 527–2222 m in depth and approximately 550 km in distance. Restriction fragment length polymorphism (RFLP) and size polymorphism analysis of the markers suggest that populations are not genetically differentiated. FST values were not significantly different from zero. The presence of a panmictic population of “B.childressi over such a broad range of depth suggests that this species may be quite different from most members of the Gulf of Mexico seep chemosynthetic communities.  相似文献   

3.
To estimate the degree of spatial heterogeneity of benthic deep-sea communities, we carried out a multiple-scale (from m's to 200 km) investigation in the Congo-Angola margins (Equatorial West African margin, 3150–4800 m) in which we examined the metazoan meiofauna at a variety of habitats along the Congo Channel system and in the associated cold seep. We investigate the structure, density, vertical distribution patterns in the sediment and biomass of meiofaunal communities in the Gulf of Guinea and how they are controlled by hydrologic and biogeochemical processes. The meiofaunal communities in the Gulf of Guinea were shaped by heterogeneous conditions on the margin, and reflect the multiple-scale spatial variability that corresponds with the different identified habitats. The two control sites, located at >100 km away from the canyon, were inhabited by very dense and the most diverse meiobenthic communities. Similar meiobenthic communities inhabited the transition zone between the canyon and the cold seep. Sites located along the Congo Channel were obviously affected by the local high-velocity bottom currents and unstable sedimentary conditions in this active submarine system. Extremely low meiobenthic densities and very low proportions in the most surficial sediment layers provided evidence for recently highly disturbed sediments at these sites. The remote operated vehicle (ROV) Victor 6000 provided images of the cold seep, showing a patchy distribution of several types of patchy distributed megafaunal communities dominated by three key symbiotic taxa (Mytilidae, Vesicomyidae and Siboglinidae). These cold seep sediments were colonised by a unique meiobenthic community, characterised by a high small-scale (m's) patchiness, low species richness and the prominent dominance of two large-sized nematode species: Sabatieria mortenseni, which is a cosmopolitan nematode known from littoral habitats, and an undescribed Desmodora species. The high individual body weight of S. mortenseni and its dominance at the cold seep site resulted in a significantly higher nematode biomass at the seep compared to the surrounding sites. In addition, the vertical nematode profiles, with maximum proportions in subsurficial layers, points to a chemosynthesis-based meiobenthic community in this cold seep, in contrast to the phytodetritus-based communities at the control sites and at the transition zone.  相似文献   

4.
Although there is a growing body of evidence indicating benthic foraminifera inhabit hydrocarbon and cold seep environments, biochemical and ultrastructural data on seep foraminiferal communities are not available. Therefore, sediments collected from cold seeps in Monterey Bay, CA (900–1000 m), were examined for the presence of live benthic foraminifera. Results from three independent methods (ATP assay, ultrastructural analysis, rose Bengal staining) indicate that certain species inhabit the Clam Flat and Clam Field seeps. Abundances in our seep samples were lower than in comparable non-seep sites, although not atypical for these bathyal depths. Of 38 species represented at these two seep sites by cytoplasm-containing specimens, only Spiroplectammina biformis was restricted to the seep environment. However, because S. biformis is also known from non-seep sites in other areas, it should not be considered as endemic to seeps. Ultrastructural studies show abundant peroxisomes in seep specimens, which may allow inhabitation of such environments. One specimen of Uvigerina peregrina had prokaryotes nestled in test pores, suggesting that bacteria may play a role in the survival of foraminifera in this seep environment.  相似文献   

5.
Density, taxonomic composition at higher taxon level and vertical distribution of benthic macrofaunal communities and sediment characteristics (pore water, nitrogen, organic carbon, sulfur, C/N ratio, n-alcohol biomarkers) were examined at three deep sites on the Congo–Gabon continental margin. This study was part of the multidisciplinary BIOZAIRE project that aimed at studying the deep benthic ecosystems in the Gulf of Guinea. Sampling of macrofaunal communities and of sediment was conducted during three cruises (January 2001, December 2001 and December 2003) at two downslope sites (4000 m depth), one located near the Congo submarine channel (15 km in the south) and the other one far from the channel (150 km in the South). The third area located 8 km north of the Congo channel in the surroundings of a giant pockmark at 3160 m depth was sampled during one cruise in December 2003.At these three locations the macrofaunal communities presented relatively high densities (327–987 ind. 0.25 m−2) compared with macrofaunal communities at similar depths; that is due to high levels of food input related to the Congo river and submarine system activities that affect the whole study area. The communities were different from each other in terms of taxonomic composition at higher taxon level (phylum, class, order for all the groups except for the polychaetes classified into families). The polychaetes dominated the communities and were responsible for the increase in densities observed at both deep sites (4000 m) between January 2001 and December 2003 whereas the tanaidaceans, the isopods and the bivalves were the other most abundant taxa responsible for the spatial differences between these sites. The community at 3150 m differed from the two deep communities by higher abundances in bivalves, nemerteans and holothuroids. The composition of the polychaete community also differed among sites.In the vicinity of the Congo channel, the expected positive effect of the additional organic matter transported through the turbiditic currents on to the surrounding benthic communities was not observed, as the increase in densities during the study period was higher at the site located away from the Congo channel than near the channel (80% vs 30%). That may be due to the low food value of the organic matter of terrestrial origin carried through the turbidites, and/or to the disturbance caused by these turbidites. Conversely, far from the channel the macrofaunal communities benefit from organic matter of higher energetic value originating mainly from marine sources, but also from continental sources, carried by the Congo plume or by near-bed currents across or along the continental slope. Spatial and temporal variability in trophic and physical characteristics of the sediment habitat at both deep sites also affected the vertical distribution of the macrofaunal communities.The activities of the very active Congo system structure the deep macrofaunal communities on a large area in terms of densities, composition and vertical distribution. The food input is enhanced at regional scale as well as the heterogeneity of the sediment characteristics, mainly in terms of organic matter quality (marine vs terrigenous). In turn, the densities are enhanced as well as the regional diversity of the macrofaunal communities in terms of taxonomic composition and distribution.  相似文献   

6.
There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels.  相似文献   

7.
Methane seeps occur at depths extending to over 7000 m along the world's continental margins, but there is little information about the infaunal communities inhabiting sediments of seeps deeper than 3000 m. Biological sampling was carried out off Unimak Island (3200–3300 m) and Kodiak Island (4500 m) on the Aleutian margin, Pacific Ocean and along the Florida Escarpment (3300 m) in the Gulf of Mexico to investigate the community structure and nutrition of macrofauna at these sites. We addressed whether there are characteristic infaunal communities common to the deep‐water seeps or to the specific habitats (clam beds, pogonophoran fields, and microbial mats) studied here, and ask how these differ from background communities or from shallow‐seep settings sampled previously. We also investigated, using stable isotopic signatures, the utilization of chemosynthetically fixed and methane‐derived organic matter by macrofauna from different regions and habitats. Within seep sites, macrofaunal densities were the greatest in the Florida microbial mats (20,961 ± 11,618 ind·m−2), the lowest in the Florida pogonophoran fields (926 ± 132 ind·m−2), and intermediate in the Unimak and Kodiak seep habitats. Seep macrofaunal densities differed from those in nearby non‐seep sediments only in Florida mat habitats, where a single, abundant species of hesionid polychaete comprised 70% of the macrofauna. Annelids were the dominant taxon (>60%) at all sites and habitats except in Florida background sediments (33%) and Unimak pogonophoran fields (27%). Macrofaunal diversity (H′) was lower at the Florida than the Alaska seeps, with a trend toward reduced richness in clam bed relative to pogonophoran field or non‐seep sediments. Community composition differences between seep and non‐seep sediments were evident in each region except for the Unimak margin, but pogonophoran and clam bed macrofaunal communities did not differ from one another in Alaska. Seep δ13C and δ15N signatures were lighter for seep than non‐seep macrofauna in all regions, indicating use of chemosynthetically derived carbon. The lightest δ13C values (average of species’ means) were observed at the Florida escarpment (−42.8‰). We estimated that on average animal tissues had up to 55% methane‐derived carbon in Florida mats, 31–44% in Florida clam beds and Kodiak clam beds and pogonophoran fields, and 9–23% in Unimak seep habitats. However, some taxa such as hesionid and capitellid polychaetes exhibited tremendous intraspecific δ13C variation (>30‰) between patch types. Overall we found few characteristic communities or features common to the three deep‐water seeps (>3000 m), but common properties across habitats (mat, clam bed, pogonophorans), independent of location or water depth. In general, macrofaunal densities were lower (except at Florida microbial mats), community structure was similar, and reliance on chemosynthesis was greater than observed in shallower seeps off California and Oregon.  相似文献   

8.
The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60–70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.  相似文献   

9.
The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ∼14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ∼700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ∼1800 m, decreasing with depth to ∼2600 m before increasing again to high levels at ∼4700 m.  相似文献   

10.
Vestimentiferan tubeworms are a group of large sessile marine polychaete annelids (family Siboglinidae) found in the regions of hydrothermal venting or seepage of the reduced chemical hydrogen sulfide. Hydrocarbon seeps on the Louisiana Slope of the Gulf of Mexico support large communities of the co-occurring vestimentiferan species Lamellibrachia luymesi and Seepiophila jonesi. These sessile species have the opportunity to disperse between the patchy sites of active seepage on the seafloor during a planktonic larval stage. However, it is unclear whether dispersal occurs at a local or global scale. Four (L. luymesi) and seven (S. jonesi) microsatellite loci were used to test for population substructure among ten hydrocarbon seep sites on the Louisiana Slope. Both species showed high levels of allelic diversity, averaging 18.5 (L. luymesi) and 22 (S. jonesi) alleles/locus, respectively, and high observed heterozygosity at all microsatellite loci (0.71–0.9 in L. luymesi, 0.27–0.84 in S. jonesi). The two species showed a significant deficiency in heterozygotes compared to that predicted under the Hardy–Weinberg equilibrium. L. luymesi showed a small but significant amount of population structure, with a positive correlation between genetic and geographic distance among the sample sites spanning 540 km. S. jonesi, in contrast, showed no evidence for isolation by distance, but did show a significant genetic difference between aggregations of different ages. These results suggest that these two species differ in how larvae are able to colonize new seep sites through space (L. luymesi) and though time (S. jonesi).  相似文献   

11.
Abstract.  Infauna, including foraminifera and metazoans, were enumerated and identified from five types of seep habitats and two adjacent non-seep habitats. Collections were made with the deep submergence research vessel 'Alvin' from three areas of active seepage in the Gulf of Mexico (Alaminos Canyon [2220 m], Atwater Canyon [1930 m], and Green Canyon lease block 272 [700 m]) and on the Blake Ridge Diapir [2250 m], which is located off the southeastern coast of the United States. The seep habitats sampled included four types of microbial mats ( Beggiatoa , Thioploca , thin and thick Arcobacter ) and the periphery of a large mussel bed. Sediments under large rhizopod protists, xenophyophores, were sampled adjacent to the mussel bed periphery. A non-seep site, which was >1 km away from active seeps, was also sampled for comparison. Densities of most taxa were higher in the Gulf of Mexico seeps than in Blake Ridge samples, largely because densities in the thick microbial mats of Blake Ridge were significantly lower. Diversity was higher in the Thioploca mats compared to other microbial-mat types. Within an ocean basin ( i.e. , Atlantic, Gulf of Mexico) we did not observe significant differences in meiofaunal or macrofaunal composition in Beggiatoa versus Thioploca mats or thin versus thick Arcobacter mats. Foraminifera represented up to 16% of the seep community, a proportion that is comparable to their contribution at adjacent non-seep communities. In general, the observed densities and taxonomic composition of seep sites at the genus level was consistent with previous observations from seeps ( e.g. , the foraminifers Bolivina and Fursenkoina , the dorvilleid polychaete Ophryotrocha ).  相似文献   

12.
Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: “Calyptogena” (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d’Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon–Congo–Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.  相似文献   

13.
To investigate a possible influence of submarine methane seepage on benthic foraminiferal communities, Rose Bengal stained (“live”) and empty tests of benthic foraminifera were studied from the sediment surface down to 15 cm sub-bottom depth of 12 sites at the Håkon Mosby mud volcano (HMMV). In addition, one reference site well away from the seep sites, but from similar water depths and the same general hydrographic setting was occupied for comparison. The HMMV is located at 1265 m water depth on the SW Barents Sea continental slope. Distinct living foraminiferal associations at the HMMV are linked to specific sedimentary, microbial, and macrofaunal habitats. In the center of the crater, and in crater areas completely covered by bacterial mats, Cassidulina reniforme is the only, albeit rare, living species. Below the top few millimeters, sediments are anoxic and devoid of living specimens. At the rim of the mud volcano, at sites densely populated by pogonophoran tube worms, three benthic foraminiferal associations are found; (i) a Fontbotia wuellerstorfi–Lobatula lobatula association living attached to the upper parts of pogonophoran tubes, which protrude into oxic water, (ii) a diverse Cassidulina neoteretis association populating dysoxic sediments of the surface centimeter, and (iii) a species-poor Bolivina pseudopunctata association colonizing the subsurface sediments down to four centimeters. Generally, we did not find endemic or seep indicative species or associations at the HMMV. However, the HMMV live faunas dominated by B. pseudopunctata are not found at the reference site nor are they described from comparable water depths and environments without gas seepages from the Norwegian-Greenland Seas.In the center and outer rim of the mud volcano, a C. neoteretis–Reophax guttifer dead association, similar to the one at the reference site, characterizes an assemblage of strongly corroded and partly displaced tests. At bacterial mat sites, a C. reniforme dead association corresponds to the living one. Thus both the living and the dead associations are indicative of a specific bacterial mat environment at the HMMV.  相似文献   

14.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

15.
Deep-water benthic algal composition and cover were studied with a submersible on the deep fore reef of Lee Stocking Island, Bahamas, from 45 to 150 m. Algal cover decreased from 57% to 16% over this depth range. Although there was substantial overlap in depth distributions, different species or groups of species dominated benthic cover at different depths. Lobophora and Halimeda copiosa co-dominated the fore reef from 45 to 60 m. A Corallinales/Peyssonnelia group was abundant from 60 to 120 m. The Corallinales/Peyssonnelia group shared dominance with Ostreobium between 90 and 120 m. Ostreobium was the only alga observed below 150 m and remained abundant below 200 m. Movement of sand down the fore reef is recognized as having substantial influence on algal cover.  相似文献   

16.
Five moorings ML1–ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1–3 February 1999 to 24–26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s−1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (106 m3 s−1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1–ML3. It flowed at depths of approximately 2000–3500 m with the highest velocity in the middle of this layer and seldom reached the near-bottom where eddy-like disturbances existed. Its volume transport at the mooring deployment was 10.4 Sv. The upper deep current during the first half of the observation period had double cores divided by the countercurrent at ML1, whereas that during the second half had a single core, as the countercurrent at ML1 disappeared in early September 1999. The vector mean velocities of the upper deep current were 5.0 (2650 m, ML2) and 3.6 cm s−1 (1880 m, ML3) during the first half of the observation period and 7.0 cm s−1 (2670 m, ML1) during the second half; they ranged from 3 to 7 cm s−1. Similarly, those of the countercurrent at ML1 during the first half were 6.4, 3.8, 4.6 cm s−1 (2170, 2670, 3570 m).  相似文献   

17.
Boundary currents and internal waves determine cross-slope zonation of erosion and deposition in the Faeroe-Shetland Channel. Currents were measured at 8 and 34–50 m above the bottom at three mooring sites (502, 595 and 708 m depth) for 14 days. The structure of the water column was evaluated from CTD sections, and included nepheloid layers and particulate matter concentrations. Indicators for recent deposition in the sediment (organic carbon, phytopigments, 210Pb) were measured at eight stations across the slope. Strong near-bottom currents at the upper slope sustain down-slope particle transport in a benthic nepheloid layer, which is eroded under the influence of critically reflecting M2 internal tidal waves at 350–550 m, where the major pycnocline meets the sloping bottom. Beam attenuation profiles confirmed the presence of intermediate nepheloid layers intruding into the Channel along the major pycnocline, and elevated concentrations of particulate matter and chlorophyll-a were measured at this depth. Near-bottom currents decreased with depth, thus allowing particle deposition down the slope. Inventories of excess 210Pb activity in the sediment deeper than 600 m were higher than what was expected on the basis of atmospheric input of 210Pb and production in the water column, thus indicating additional lateral inputs. Simple calculations showed that off-slope input of particles from areas shallower than 600 m may be responsible for the enhanced deposition at greater depths.  相似文献   

18.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

19.
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.  相似文献   

20.
The analogy between desert oasis and deep-sea chemosynthetic community arose from the biomass contrast between vents and the relatively depauperate background benthic fauna. Fully developed, the analogy helps pose questions about interactions with the background fauna with respect to resources, colonization, and persistence. The chemosynthetic sites of the Gulf of Mexico provide an opportunity to consider possible interactions between vent and nonvent fauna over a 3000-m depth range. It is postulated that deep chemosynthetic communities require the operation of geochemical transporting and concentrating processes to overcome low levels of in situ methane and sulfide production. Clathrate reservoirs may serve these functions. A few chemosynthetic species at the Gulf of Mexico upper slope sites are related to shallow-water sulfide species, but it can be speculated that the dominant chemosynthetic fauna may have originated in a wide spread deep sulfide biome of the Cretaceous. Generic endemism of consumers is low in Gulf of Mexico sites, suggesting a high level of colonization from the surrounding benthos. Chemosynthetic communities may avoid excessive colonization by predators in spite of the apparent food limitation of the surrounding benthos due to toxicity or an evolutionary mechanism selecting against specialized predators. The abundance of large predators is related to the composition of the surrounding benthos and is high at the Gulf of Mexico upper slope sites. Exclusion of chemosyntheic communities from shallower depths may be due to excessive predation by generalists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号