首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profiles of the UV semiforbidden lines of C III and Si III of RW Aur have been obtained with the HST/STIS. The C III profile shows two high velocity components at v = ± 170 km s?1 and a central one. The Si III profile is very broad (FWHM = 293 km s?1) and the high velocity components are unresolved. It is shown that the high velocity components are most probably produced in a rotating belt alike the detected in other sources of bipolar outflows. A radius between 2.7 R * and the corotation radius (6.1 R *) is derived and a log T e (K) ?4.7 and log n e(cm ?3) = 11.6 are estimated. The belt is clumpy and the most likely source of heating is local X-rays radiation, probably associated with the release of magnetic energy.  相似文献   

2.
A simple vibrational relaxation model which reproduces the observed altitude integrated vibrational distribution of the Herzberg I bands in the nightglow is used to derive the altitude profiles of the individual vibrational levels at 1 km intervals in the 85–115 km height range. The possible errors associated with using rocket-borne photometer measurements of a limited number of bands in the O2(A3Σu+?X3Σg?) system to infer the total Herzberg I emission profile are assessed.  相似文献   

3.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

4.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

5.
Analysis of observed spectrograms is based on comparison with synthetic spectra. The O2(b1Σ+g?X3Σ?g Atm. (1,1) band in high latitude auroras observed from the ground is found to be the strongest in the Δv = 0 sequence. It is enhanced with altitude relative to the N2 1P(2, 0)and N+2 M(2,0) bands, but the O2 Atm. (2, 2) band has an unexpected low intensity. The range of rotational temperatures of the O2 Atm. bands varies from approx. 200 to above 500 K which indicates that the altitude of the centroid of the emission region varies from about 100 km to the F-region. The highest temperature is found in the midday aurora associated with the magnetospheric cusp. Conspicuous relative variations between the intensities of N2 and O2 spectra are documented, but a satisfactory explanation of the variety is not given. Deviations of the observed O2 Atm. band intensities from the vibrational intensity distribution predicted by Franck-Condor factors indicate that the excitation of the O2 Atm. bands in aurora is not mainly due to particle impact on O2, and the contribution due to energy transfer from hot O(1D) atoms has to be found in future research.  相似文献   

6.
After molecular nitrogen, methane is the most abundant species in Titan’s atmosphere and plays a major role in its energy budget and its chemistry. Methane has strong bands at 3.3 μm emitting mainly at daytime after absorption of solar radiation. This emission is strongly affected by non-local thermodynamic equilibrium (non-LTE) in Titan’s upper atmosphere and, hence, an accurate modeling of the non-LTE populations of the emitting vibrational levels is necessary for its analysis. We present a sophisticated and extensive non-LTE model which considers 22 CH4 levels and takes into account all known excitation mechanisms in which they take part. Solar absorption is the major excitation process controlling the population of the v3-quanta levels above 1000 km whereas the distribution of the vibrational energy within levels of similar energy through collisions with N2 is also of importance below that altitude. CH4-CH4 vibrational exchange of v4-quanta affects their population below 500 km. We found that the ν3 → ground band dominates Titan’s 3.3 μm daytime limb radiance above 750 km whereas the ν3 + ν4 → ν4 band does below that altitude and down to 300 km. The ν3 + ν2 → ν2, the 2ν3 → ν3, and the 13CH4ν3 → ground bands each contribute from 5% to 8% at regions below 800 km. The ν3 + 2ν4 → 2ν4and ν2 + ν3 + ν4 → ν2 + ν4 bands each contribute from 2% to 5% below 650 km. Contributions from other CH4 bands are negligible. We have used the non-LTE model to retrieve the CH4 abundance from 500 to 1100 km in the southern hemisphere from Cassini-VIMS daytime measurements near 3.3 μm. Our retrievals show good agreement with previous measurements and model results, supporting a weak deviation from well mixed values from the lower atmosphere up to 1000 km.  相似文献   

7.
Horizontal macroscopic velocities V hor in the photosphere are studied. High-resolution spectrograms of quiet regions are analyzed for center-limb variation of rms Doppler shifts. The data are treated to assure that the observed velocities refer to constant size volumes on the Sun (800 × × 3000 × 250 km), independent of μ. Using known height variation of vertical velocities and calculated line formation heights, the height dependence of 〈V hor〉 is obtained. From a value around 450 m s?1 it decreases rapidly with increasing height. To study also small-scale velocities, the time evolution of subarcsecond size elements in the photospheric network (solar filigree) is studied on filtergrams. It is concluded that they show proper motions implying 〈V hor〉 about 1 km s?1.  相似文献   

8.
Altitude dependences of [CO2] and [CO2+] are deduced from Mariner 6 and 7 CO2+ airglow measurements. CO2 densities are also obtained from ne radio occultation measurements. Both [CO2] profiles are similar and correspond to the model atmosphere of Barth et al. (1972) at 120 km, but at higher altitudes they diverge and at 200–220 km the obtained [CO2] values are three times less the model. Both the airglow and radio occultation observations show that a correction factor of 2.5 should be included into the values for solar ionization flux given by Hinteregger (1970). The ratio of [CO2+]/ne is 0.15–0.2 and, hence, [O]/[CO2] is ~3% at 135 km. An atmospheric and ionospheric model is developed for 120–220 km. The calculated temperature profile is characterized by a value of T ≈ 370°K at h ? 220 km, a steep gradient (~2°/km) at 200-160 km, a bend in the profile at 160 km, a small gradient (~0.7°/km) below and a value of T ≈ 250°K at 120 km. The upper point agrees well with the results of the Lyman-α measurements; the steep gradient may be explained by molecular viscosity dissipation of gravity and acoustical waves (the corresponding energy flux is 4 × 10?2 erg cm?2sec?1 at 180 km). The bend at 160 km may be caused by a sharp decrease of the eddy diffusion coefficient and defines K ≈ 2 × 108cm2sec?1; and the low gradient gives an estimate of the efficiency of the atmosphere heating by the solar radiation as ? ≈ 0.1.  相似文献   

9.
The high electron temperatures existing within SAR-arcs can result in enhanced vibrational excitation of atmospheric N2 molecules and, as a consequence, increase the rate coefficient of the reaction, O+ + N2 → NO+ + N. This results in a change in the relative abundance of O+ and NO++ in the SAR-arc region compared with that in the undisturbed ionosphere. Theoretical ion density profiles were computed by a triple ion analysis solving the mass, momentum and energy equations for O+, NO+ and O+2 ions self-consistently. Although the electron temperature dependence of the recombination rate of NO+ is not well known, the results show that for a range of expected recombination rates NO+ still remains the dominant ion up to ca. 320 km at night within a bright SAR-arc. Studies were also made of the relative importance of a downward O+ flux and an upward ion drift in maintaining the F-region under SAR-arc conditions. It was found that the upward drift caused a marked increase in the NO+/O+ transition altitude as high as 460 km at night. However, for typical drift speeds up to 50 m sec?1 the peak electron density was lower than experimental observations. The effect of a large, short-duration perpendicular electric field on the SAR-arc ion and electron density profiles was found to be small. In all cases considered the magnitude of the enhanced NO+ density as a result of vibrationally excited N2 molecules was sufficient to prevent the electron density within the night-time SAR-arc from becoming vanishingly small.  相似文献   

10.
A model calculation to predict infrared Shuttle flow due to the radiative relaxation of vibration of the NO molecule is presented. Space Shuttles hit atmospheric NO molecules at a very high speed (≈ 8 km s?1) and excite vibrational and rotational motions up to the temperature of 54,000 K. With the electric dipole radiation of Δν = 1, 2, 3, and particularly 4 (ν is the vibrational quantum number), the excited NO molecules emit infrared radiation before they collide with other molecules. The total radiation power is estimated to be 170AμW, where A is the cross-section area of the Shuttle in m2 if no adsorption of the NO molecule takes place on the Shuttle surface. The intensity of each infrared line is calculated as a function of time, including all vibrational states up to ν = 35. For example, the 5039 cm?1 line (ν = 24 → 20) has a maximum intensity of about 2.3 × 10?21 W molecule at around 0.2 ms, which corresponds to 80 cm from the Shuttle surface if the recoil speed of the molecules is 4 km s?1.  相似文献   

11.
The discovery of a molecular oxygen atmosphere around Saturn's rings has important implications for the electrodynamics of the ring system. Its existence was inferred from the Cassini in situ detection of molecular oxygen ions above the rings during Saturn Orbit Insertion in 2004. Molecular oxygen is difficult to observe remotely, and theoretical estimates have yielded only a lower limit (Nn?1013 cm−2) to the O2 column density. Comparison with observations has previously concerned matching ion densities at spacecraft altitudes far larger than the scale height of the neutral atmosphere. This is further complicated by charged particle propagation effects in Saturn's offset magnetic field. In this study we adopt a complementary approach, by focusing on bulk atmospheric properties and using additional aspects of the Cassini observations to place an upper limit on the column density. We develop a simple analytic model of the molecular atmosphere and its photo-ionization and dissociation products, with Nn a free parameter. Heating of the neutrals by viscous stirring, cooling by collisions with the rings, and torquing by collisions with pickup ions are all included in the model. We limit the neutral scale height to h?3000 km using the INMS neutral density nondetection over the A ring. A first upper limit to the neutral column is derived by using our model to reassess O2 production and loss rates. Two further limits are then obtained from Cassini observations: corotation of the observed ions with the planet implies that the height-integrated conductivity of the ring atmosphere is less than that of Saturn's ionosphere; and the nondetection of fluorescent atomic oxygen over the rings constrains the molecular column from which it is produced via photo-dissociation. These latter limits are independent of production and loss rates and are only weakly dependent on temperature. From the three independent methods described, we obtain similar limits: Nn?2×1015 cm−2. The mean free path for collisions between neutrals thus cannot be very much smaller than the scale height.  相似文献   

12.
Larry P. Cox  John S. Lewis 《Icarus》1980,44(3):706-721
Three representative numerical simulations of the growth of the terrestrial planets by accretion of large protoplanets are presented. The mass and relative-velocity distributions of the bodies in these simulations are free to evolve simultaneously in response to close gravitational encounters and occasional collisions between bodies. The collisions between bodies, therefore, arise in a natural way and the assumption of expressions for the relative velocity distribution and the gravitational collision cross section is unnecessary. These simulations indicate that the growth of bodies with final masses approaching those of Venus and the Earth is possible, at least for the case of a two-dimensional system. Simulations assuming an initial uniform distribution of orbital eccentricities on the interval from 0 to emax are found to produce final states containing too many bodies with masses which are too small when emax < 0.10, while simulations with emax > 0.20 result in too many catastrophic collisions between bodies thus preventing rapid accretion of planetary-size bodies. The emax = 0.15 simulation ends with a state surprisingly similar to that of the present terrestrial planets and, therefore, provides a rough estimate of the range of radial sampling to be expected for the terrestrial planets.  相似文献   

13.
Altitude distributions of electronically excited atoms and molecules of oxygen and nitrogen in the aurora have been obtained by means of rocket-borne wavelength scanning interference filter photometers launched from Fort Churchill, Manitoba (58.4°N, 94.1°W) on January 23, 1974. Atomic oxygen densities derived from mass spectrometer measurements obtained during the flight are used in conjunction with the volume emission rate ratio of the N2(C3Πu?B3Πg) (0-0) second positive and N2(A3Σu+, v = 1?X1Σg+) Vegard-Kaplan bands to derive a rate constant for quenching of the N2(A3Σu+, v = 1) level with O(3P) of 1.7(±0.8) × 10?11 cm3 s?1 These data, together with O den derived from the O2(b1Σg+) state nightglow emission observed during the rocket ascent, suggest that quenching of the N2(A3Σu+, v = 1) level by O2 has a significant positive temperature dependence. The processes involved in the production and loss of the N2(A3Σu+) state are considered and energy transfer from the N2(A3Σu+) state to O(3P) is found to be a significant source of the OI 5577 Å green line in this aurora at altitudes below 130 km. Emission from the NO(A2Σ+?X2Π) gamma bands was not detected, an observation which is consistent with the mass spectrometer data obtained during the flight indicating that the NO density was <108 cm3 at 110 km. On the basis of previous rocket and satellite measurements of the NO gamma bands, energy transfer from the N2(A3Σu+) state to NO(X2Π) is shown to be an insignificant source of the gamma bands in aurora. Altitude profiles of the N2(a1Πg?X1Σg+) Lyman-Birge-Hopfield band system are presented.  相似文献   

14.
Empirical models of molecular ion densities (N2 +, NO+, O2 +) and the electron density (N e ) are presented in the altitude interval 50–4000 km as functions of time (diurnal, annual), space (position, altitude) and solar flux (F 10.7). Using observations of 6 satellites (AE-C, AE-D, AE-E, ALOUETTE-2, ISIS-1, ISIS-2), 4 incoherent scatter stations (Arecibo, Jicamarca, Millstone Hill, St Santin) and more than 700 D-region profiles, this model describes the global gross features of the ionosphere for quiet geophysical conditions (K p 3).The molecular ion densities and the electron density increase with increasing altitude up to a maximum (or several maxima) - and decrease from thereon with increasing height. Between ~80 and 200 km, the main ionic constituents are NO+ and O2 +; below ~80 km cluster ions are predominating. During local summer conditions the molecular ions and N e increase around polar latitudes and decrease correspondingly during local winter. The diurnal variations are intrinsically coupled to the individual plasma layers; in general, the molecular ion and electron densities are enhanced during daytime and depleted during nighttime (for details and exceptions, see text).  相似文献   

15.
It is proposed that energy transfer from excited O2 contributes to the production of O(1S) in aurora. An analysis is presented of the OI5577 Å emission in an IBC II+ aurora between 90 and 130 km. The volume emission rate of the emission at these altitudes is consistent with the production rate of O(1S) by energy transfer to O(3P) from N2 in the A3Σ2+ state and O2 in the A3Σu+, C3Δc1Σu? states, the N2A state being populated by direct electron impact excitation and BA cascade and the excited O2 states by direct excitation. Above the peak emission altitude (~105 km), energy transfer from N2A is the predominant production mechanism for O(1S). Below it, the contribution from quenching of the O2 states becomes significant.  相似文献   

16.
The statistical parallax technique is applied to a sample of 262 RRab Lyrae variables with published photoelectric photometry, metallicities, and radial velocities and with measured absolute proper motions. Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al. 1992) were used as the sources of proper motions; the proper motions from the last three catalogs were reduced to the Hipparcos system. We determine parameters of the velocity distribution for halo [(U 0, V 0, W 0) = (?9±12, ?214 ±10, ? 10, ?16±7) km s ?1 and (σ U , σ V , σ W ) = (164±11, 105±7, 95±7) km s ?1] and thick-disk [(U 0, V 0, W 0) = (?16±8, ?41±7, ?18±5) km s ?1], and [(σ U , σ V , σ W ) = (53±9, 42±8, 26±5) km s ?1] RR Lyrae, as well as the intensity-averaged absolute magnitude for RR Lyrae of these populations: 〈M V 〉 = 0.77 ± 0.10 and 〈M V 〉 = +1.11 ± 0.25 for the halo and thickdisk objects, respectively. The metallicity dependence of the absolute magnitude of RR Lyrae is analyzed (〈M V 〉 = (0.76 ± 0.12) + (0.26 ± 0.26) · ([Fe/H]+1.6)=1.17+0.26 · [Fe/H]). Our results are in satisfactory agreement with the ?M V ?(RR)?[Fe/H]relation from Carney et al. (1992) (〈M V 〉(RR)=1.01+0.15·[Fe/H]) obtained by Baade-Wesselink's method. They provide evidence for a short distance scale: the LMC distance modulus and the distance to the Galactic center are 18.22±0.11 and 7.4±0.5 kpc, respectively. The zero point of the distance scale and the kinematic parameters of the RR Lyrae populations are shown to be virtually independent of the source of absolute proper motions used and of whether they are reduced to the Hipparcos system or not.  相似文献   

17.
We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 Å spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s?1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s?1. The He I λ5876 Å line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s?1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm?3 and T e ~ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 ? spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s−1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s−1. The He I λ5876 ? line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s−1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm−3 and T e ∼ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = , ΔB = , and ΔU = and no color-magnitude correlation. We estimate the total extinction for the star from our photometric observations as A v = . Near-IR observations have revealed dust radiation with a temperature of ∼1300 K. We estimate the distance to StHα62 to be r = 5.2 ± 1.2 kpc by assuming that the star is a low-mass (M = 0.55 ± 0.05 M ) protoplanetary nebula. Original Russian Text ? V.P. Arkhipova, V.G. Klochkova, E.L. Chentsov, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 737–747.  相似文献   

18.
Under the assumption that the photospheric quiet Sun magnetic field is turbulent, the cancellation function has previously been used to estimate the true, resolution-independent mean, unsigned vertical flux 〈|B z |〉true. We show that the presence of network elements, noise, and seeing complicate the measurement of accurate cancellation functions and their power law exponents κ. Failure to exclude network elements previously led to estimates that were too low for both the cancellation exponent κ and 〈|B z |〉true. However, both κ and 〈|B z |〉true are overestimated due to noise in magnetograms. While no conclusive value can be derived with data from current instruments, our Hinode/SP results of κ?0.38 and 〈|B z |〉true?270 gauss can be taken as upper bounds.  相似文献   

19.
Dirty ice of a second kind (major components, H2O, CO, and N2; minor components less than several percents, NH3, CH4, and other organic substances such as HCN, CH3CN etc.) is assumed for the composition of volatiles in the cometary nucleus. The consistency with the observations of molecular ions and daughter molecules in the cometary atmosphere is argued by taking into account various ion-molecular reactions and dissociative recombinations. There is a satisfactory agreement for the second kind of dirty-ice model, but the presence of large amounts of CH4 and NH3 is found to be rather in contradiction with observational evidence. A velocity of 8 km s?1 for the hydrogen atoms, derived from analysis of the hydrogen Lyman-alpha corona around comets, is found from the dissociative recombination of H3O+, the dominant constituent of cometary ionosphere, in accordance with H3O++e ?→OH+H+H.  相似文献   

20.
We analyzed the chemical composition of the chemically peculiar (CP) star HD 0221=43 Cas using spectra taken with the NES spectrograph of the 6-m telescope with a spectral resolution of 45 000. The Hβ line profile corresponds most closely to Teff = 11 900 K and log g = 3.9. The rotational velocity is ve sin i = 27 ± 2 km s?1, and the microturbulence is ξt = 1 km s?1. The results of our abundance determination by the method of synthetic spectra show that the star has chemical anomalies typical of SrCrEu stars, although its effective magnetic field is weak, Be < 100 G. For silicon, we obtained an abundance distribution in atmospheric depth with a sharp jump of 1.5 dex at an optical depth of log τ5000 = ?0.3 and with silicon concentration in deep atmospheric layers. Similar distributions were found in the atmospheres of cooler stars with strong and weak magnetic fields. A comparison of the chemical peculiarities in HD 10221 with known CP stars with magnetic fields of various strengths leads us to conclude that a low rotational velocity rather than amagnetic field is the determining factor in the formation mechanism of chemical anomalies in the atmospheres of CP stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号