首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.  相似文献   

2.
Quaternary deposits on the Pacific slope of Washington range in age from the earliest known interglaciation, the Alderton, through the Holocene. Pollen stratigraphy of these deposits is represented by 12 major pollen zones and is ostensibly continuous through Zone 8 over more than 47,000 radiocarbon yr. Before this, the stratigraphy is discontinuous and the chronology less certain. Environments over the time span of the deposits are reconstructed by the comparison of fossil and modern pollen assemblages and the use of relevant meteorological data. The Alderton Interglaciation is characterized by forests of Douglas fir (Pseudotsuga menziesii), alder (Alnus), and fir (Abies). During the next younger interglaciation, the Puyallup, forests were mostly of pine, apparently lodgepole (Pinus contorta), except midway in the interval when fir, western hemlock (Tsuga heterophylla), and Douglas fir temporarily replaced much of the pine. Vegetation outside the limits of Salmon Springs ice (>47,00034,000 yr BP) varied chiefly between park tundra and forests of western hemlock, spruce (Picea), and pine. The Salmon Springs nonglacial interval at the type locality records early park tundra followed by forests of pine and of fir. During the Olympia Interglaciation (34,00028,000 yr BP), pine invaded the Puget Lowland, whereas western hemlock and spruce became manifest on the Olympic Peninsula. Park tundra was widespread during the Fraser Glaciation (28,00010,000 yr BP) with pine becoming more important from about 15,000 to 10,000 yr BP. Holocene vegetation consisted first of open communities of Douglas fir and alder; later, closed forests succeeded, formed principally of western hemlock on the Olympic Peninsula and of western hemlock and Douglas fir in the Puget Lowland. Over the length of the reconstructed environmental record, climate shifted between cool and humid or relatively warm, semihumid forest types and cold, relatively dry tundra or park tundra types. During times of glaciation, average July temperatures are estimated to have been at least 7°C lower than today. Only during the Alderton Interglaciation and during the Holocene were temperatures higher for protracted periods that at present.  相似文献   

3.
A new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.  相似文献   

4.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

5.
The lower part of a 5-m core from Hay Lake (34°N, 109° 25′W) at 2780 m in east-central Arizona provides a pollen record for the middle Wisconsin. Identification of fossil pines is based on a key modified from Hansen and Cushing (1973, Geological Society of America Bulletin84, 1181–1200). Pinus edulis and P. monophylla are similar in size and morphology but are significantly different from P. flexilis. Haploxylon pines dominate the pollen record. The abundance of pinyon pines during the middle Wisconsin is interpreted as indicating that this group was widespread at lower elevations. The local vegetation was mixed conifer forest consisting of Picea, P. aristata, P. flexilis and/or P. strobiformis, and with P. ponderosa and/or P. contorta after about 26,000 yr B.P. Tree line was above the elevation of Hay Lake. The middle Wisconsin climate is inferred to have been cooler than today and is marked by more available moisture that permitted pinyon pines to grow at low elevations.  相似文献   

6.
Kylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin.  相似文献   

7.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

8.
Pollen spectra from cores of organic spring deposits from the Transvaal provide evidence for the climatic evolution of the province during the last 35,000 yr B.P. or more. The past climatic phases are derived from palynological reconstructions of past vegetation types by comparison of fossil pollen data with modern surface pollen spectra from various localities. Evidence is provided for an early moist, cool phase with relatively mesic bushveld and expanded montane forest in the central Transvaal, followed by a drier period with drier bushveld which probably lasted until approximately 25,000 yr B.P. During the next phase, which at the latest ended about 11,000 yr B.P., the temperatures were probably 5°–6°C cooler than at present. At that time bushveld vegetation in the central Transvaal was replaced by open grassland with macchia elements. Climatic amelioration came and semiarid savanna returned to the plains, at first gradually and then developing into a warm Kalahari thornveld-type vegetation. After 6000 yr B.P. it apparently became slightly wetter and a more broad-leafed bushveld developed. About 4000 yr B.P. it again became cooler and slightly wetter and the bushveld vegetation on the central and northern plains was comparable to present open upland types. After 2000 yr B.P. conditions gradually became warner until about 1000 yr B.P., when the modern climate of the central Transvaal bushveld originated.  相似文献   

9.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

10.
Relative sea level at Vancouver, British Columbia rose from below the present datum about 30,000 cal yr B.P. to at least 18 m above sea level 28,000 cal yr B.P. In contrast, eustatic sea level in this interval was at least 85 m lower than at present. The difference in the local and eustatic sea-level positions is attributed to glacio-isostatic depression of the crust in the expanding forefield of the Cordilleran ice sheet during the initial phase of the Fraser Glaciation. Our findings suggest that about 1 km of ice was present in the northern Strait of Georgia 28,000 cal yr B.P., early during the Fraser Glaciation.  相似文献   

11.
A new extended pollen and charcoal record is presented from Lake Euramoo, Wet Tropics World Heritage rainforest of northeast Queensland, Australia. The 8.4-m sediment core taken from the center of Lake Euramoo incorporates a complete record of vegetation change and fire history spanning the period from 23,000 cal yr B.P. to present. The pollen record is divided into five significant zones; 23,000–16,800 cal yr B.P., dry sclerophyll woodland; 16,800–8600 cal yr B.P., wet sclerophyll woodland with marginal rainforest in protected pockets; 8600–5000 cal yr B.P., warm temperate rainforest; 5000–70 cal yr B.P., dry subtropical rainforest; 70 cal yr B.P.–AD 1999, degraded dry subtropical rainforest with increasing influence of invasive species and fire.The process of rainforest development appears to be at least partly controlled by orbital forcing (precession), though more local environmental variables and human activity are also significant factors. This new record provides the opportunity to explore the relationship between fire, drought and rainforest dynamics in a significant World Heritage rainforest region.  相似文献   

12.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

13.
Pollen data from two sections from a coastal cliff on the western Yamal Peninsula (69°43.27′N, 66°48.80′E) document the environmental history during the Karginsky (Middle Weichselian) interstadial. Low pollen concentrations, high amounts of redeposited pollen, and relatively high presence of Artemisia pollen characterize sediments deposited at about 33,000 14C yr B.P. Grass-sedge plant associations with few other herbs occupied the area during the late Karginsky interstadial. Artemisia pollen may indicate rather xerophytic vegetation and disturbed soils in the area. The dominance of redeposited pollen reflects scarce (disturbed) vegetation cover and low pollen productivity. The climate was relatively cold and dry. Sediments dated to 32,400 14C yr B.P. contain fewer redeposited pollen and concentration of non-redeposited pollen is significantly higher. Pollen contents indicate the dominance of tundra-like grass-sedge vegetation and more humid conditions. Pollen records dated between 30,100 and 25,100 14C yr B.P. also reflect scarce tundra-like vegetation during this interval. The presence of Betula nana and Salix pollen may reflect limited presence of shrub communities. This suggests that the climate was somewhat warmer during the latter part of the interstadial. However, generally the pollen records show that harsh environmental conditions prevailed on the Yamal Peninsula during the Karginsky interstadial.  相似文献   

14.
Pollen evidence from Lake Shayema, Mianning County, was obtained to examine postglacial vegetation and climatic change in southwestern Sichuan, China. The sclerophyllous character of the region's warm temperate vegetation today is a reflection of extreme drought in spring before the onset of the Asian monsoons. The pollen record displays several changes in the vegetation over the last 11,000 yr. From 11,000 to 9100 yr B.P., cold-tolerant species, such as Abies , Betula, and deciduous oaks, dominated the vegetation. Between 9100 and 7800 yr B.P., the abundance of deciduous oaks decreased and evergreen oaks increased, as did Tsuga and mesic deciduous species. This change suggests a warming climate with increased precipitation. From 7800 to 4000 yr B.P., sclerophyllous species increased at the expense of mesic deciduous species, an indication that precipitation was becoming more seasonal. Except for increased disturbance starting ca. 1000 yr B.P., the predominance of sclerophyllous vegetation continued until today. The pollen results are compatible with proposed global circulation hypotheses of a strengthened monsoon system during the early to mid Holocene.  相似文献   

15.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

16.
Insect fossils and pollen from late Pleistocene nonmarine peat layers were recovered from cores from the shelf region of the Chukchi Sea at depths of about 50 m below sea level. The peats date to 11,300−11,000 yr B.P. and provide a limiting age for the regional Pleistocene-Holocene marine transgression. The insect fossils are indicative of arctic coastal habitats like those of the Mackenzie Delta region (mean July TEMPERATURES = 10.6–14°C) suggesting that 11,000 yr ago the exposed Chukchi Sea shelf had a climate substantially warmer than modern coastal regions of the Alaskan north slope. The pollen spectra are consistent with the age assignment to the Birch Interval (14,000–9000 yr B.P.). The data suggest a meadow-like graminoid tundra with birch shrubs and some willow shrubs growing in sheltered areas.  相似文献   

17.
云南鹤庆古湖晚更新世的孢粉记录及其古气候学意义   总被引:25,自引:7,他引:18       下载免费PDF全文
本文通过鹤庆古湖沉积物的孢粉记录对该区晚更新世的古植被和古气候进行了恢复。该区末次间冰期和末次冰期内部气候波动性特点与深海氧同位素记录有着较好的可比性,反映在全球变化的背景上,气候的不稳定性同样在本区有明显的响应。而且不同季风区气候资料对比也表明,本区冷湿和暖干的气候组合具有明显的区域特征,末次冰期该区夏季锋面降水增多,而间冰期则与之相反。造成这种区域环境效应的原因,与西南季风区大气环流的复杂性、云贵高原的地貌部位以及由青藏高原地表反照率引起的热力学和动力学过程有关。  相似文献   

18.
Speleothem carbon and oxygen isotopic records from Onondaga Cave, south-central Missouri, and Beckham Creek Cave, north-central Arkansas, are compared with the Cupola Pond and Oldfield Swamp pollen series from southeastern Missouri and the Rodgers Shelter and Modoc Shelter vertebrate biostratigraphic sequences from central Missouri and southwestern Illinois. Similar, and roughly contemporaneous, shifts between deciduous forest and steppe indicators throughout the Holocene are revealed in each database. These independent proxies record steppe conditions between approximately 9000 and 1500 cal yr B.P. A shift toward lighter speleothem carbon may reflect a change from warm and dry to cool and dry conditions between 4500 and 3000 yr B.P. The sensitive response of speleothem δ13C to changes in vegetation emphasizes their importance as paleoclimate records in an area containing few other millenial-scale climate proxies.  相似文献   

19.
对柴达木盆地察尔汗古贝壳堤剖面的沉积物进行孢粉分析,结果显示这个地区植被与气候在晚更新世中晚期经历以下几个阶段的变化:36.2~31.2kaB.P.(未校正14C年代,下同)期间,以禾本科、藜科、蒿属、莎草科为主,发育草原-草甸植被,气候温和湿润,盘星藻出现较多,反映淡水湖泊,水深在10m左右;31.2~27.6kaB.P.期间,松属、云杉属、桦属等为主的木本植物的含量增加,周围山地森林发育,表明气候温暖,降水量增多。但由于蒸发量大,有效湿度下降,荒漠成分柽柳属等增加,盘星藻在30kaB.P.以后消失,反映湖泊盐度增大;27.6~23.3kaB.P.期间,植被中荒漠成分显著增加,周围山地森林萎缩,气候趋向相对寒冷干旱,湖面积缩小;23.3~18.0kaB.P.,孢粉浓度很低,蒺藜科、藜科等荒漠成分明显增加,植被稀疏,已趋向荒漠化草原,反映气候寒冷干旱。从整个剖面来看,主要的陆生植物孢粉类型为禾本科、柽柳属、蒺藜科、麻黄属、松属、云杉属、柏科、胡桃属和桦属等,藜科和蒿属含量很少,这与柴达木盆地东部地区的表土分析结果完全不同,也与其他草原以及荒漠草原的表土花粉结果相异。这说明晚更新世中晚期柴达木盆地东部地区的植被和现在无法进行比较,气候环境与现在显著不同。  相似文献   

20.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号