首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The weights of evidence model for combining indicator patterns in mineral resource evaluation is briefly explained with emphasis on the effect of undiscovered deposits on the estimation of the weights and posterior probabilities. A group of six statistical tests is proposed for analyzing the interaction of two or three indicator patterns with the point pattern for mineral deposits. A distinction is made between statistics that depend on choice of unit cell size and those that are approximately or completely independent of it. Finally, weights of evidence are compared to regression coefficients obtained by means of the logistic model.  相似文献   

2.
A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping   总被引:1,自引:0,他引:1  
This paper describes a hybrid fuzzy weights-of-evidence (WofE) model for mineral potential mapping that generates fuzzy predictor patterns based on (a) knowledge-based fuzzy membership values and (b) data-based conditional probabilities. The fuzzy membership values are calculated using a knowledge-driven logistic membership function, which provides a framework for treating systemic uncertainty and also facilitates the use of multiclass predictor maps in the modeling procedure. The fuzzy predictor patterns are combined using Bayes’ rule in a log-linear form (under an assumption of conditional independence) to update the prior probability of target deposit-type occurrence in every unique combination of predictor patterns. The hybrid fuzzy WofE model is applied to a regional-scale mapping of base-metal deposit potential in the south-central part of the Aravalli metallogenic province (western India). The output map of fuzzy posterior probabilities of base-metal deposit occurrence is classified subsequently to delineate zones with high-favorability, moderate favorability, and low-favorability for occurrence of base-metal deposits. An analysis of the favorability map indicates (a) significant improvement of probability of base-metal deposit occurrence in the high-favorability and moderate-favorability zones and (b) significant deterioration of probability of base-metal deposit occurrence in the low-favorability zones. The results demonstrate usefulness of the hybrid fuzzy WofE model in representation and in integration of evidential features to map relative potential for mineral deposit occurrence.  相似文献   

3.
Concepts of fractal/multifractal dimensions and fractal measure were used to derive the prior and posterior probabilities that a small unit cell on a geological map contains one or more mineral deposits. This has led to a new version of the weights of evidence technique which is proposed for integrating spatial datasets that exhibit nonfractal and fractal patterns to predict mineral potential. The method is demonstrated with a case study of gold mineral potential estimation in the Iskut River area, northwestern British Columbia. Several geological, geophysical, and geochemical patterns (Paleozoic-Mesozoic sedimentary and volcanic clastic rocks; buffer zones around the contacts between sedimentary rocks and Mesozoic intrusive rocks; a linear magnetic anomaly; and geochemical anomalies for Au and associated elements in stream sediments) were integrated with the gold mineral occurrences which have fractal and multifractal properties with a box-counting dimension of 1.335±0.077 and cluster dimension of 1.219±0.037.  相似文献   

4.
Binary predictor patterns of geological features are integrated based on a probabilistic approach known as weights of evidence modeling to predict gold potential. In weights of evidence modeling, the log e of the posterior odds of a mineral occurrence in a unit cell is obtained by adding a weight, W + or W for presence of absence of a binary predictor pattern, to the log e of the prior probability. The weights are calculated as log e ratios of conditional probabilities. The contrast, C = W +W , provides a measure of the spatial association between the occurrences and the binary predictor patterns. Addition of weights of the input binary predictor patterns results in an integrated map of posterior probabilities representing gold potential. Combining the input binary predictor patterns assumes that they are conditionally independent from one another with respect to occurrences.  相似文献   

5.
Weights-of-evidence (WofE) modeling and weighted logistic regression (WLR) are two methods of regional mineral resource estimation, which are closely related: For example, if all the map layers selected for further analysis are binary and conditionally independent of the mineral occurrences, expected WofE contrast parameters are equal to WLR coefficients except for the constant term that depends on unit area size. Although a good WofE strategy is supposed to achieve approximate conditional independence, a common problem is that the final estimated probabilities are biased. If there are N deposits in a study area and the sum of all estimated probabilities is written as S, then WofE generally results in S > N. The difference S − N can be tested for statistical significance. Although WLR yields S = N, WLR coefficients generally have relatively large variances. Recently, several methods have been developed to obtain WofE weights that either result in S = N, or become approximately unbiased. A method that has not been applied before consists of first performing WofE modeling and following this by WLR applied to the weights. This method results in modified weights with unbiased probabilities satisfying S = N. An additional advantage of this approach is that it automatically copes with missing data on some layers because weights of unit areas with missing data can be set equal to zero as is generally practiced in WofE applications. Some practical examples of application are provided.  相似文献   

6.
Index overlay and Boolean logic are two techniques customarily applied for knowledge-driven modeling of prospectivity for mineral deposits, whereby weights of values in evidential maps and weights of every evidence map are assigned based on expert opinion. In the Boolean logic technique for mineral prospectivity modeling (MPM), threshold evidential values for creating binary maps are defined based on expert opinion as well. This practice of assigning weights based on expert opinion involves trial-and-error and introduces bias in evaluating relative importance of both evidential values and individual evidential maps. In this paper, we propose a data-driven index overlay MPM technique whereby weights of individual evidential maps are derived from data. We also propose a data-driven Boolean logic MPM technique, whereby thresholds for creating binary maps are defined based on data. For assigning weights and defining thresholds in these proposed data-driven MPM techniques, we applied a prediction-area plot from which we can estimate the predictive ability of each evidential map with respect to known mineral occurrences, and we use that predictive ability estimate to assign weights to evidential map and to select thresholds for generating binary predictor maps. To demonstrate these procedures, we applied them to an area in the Kerman province in southeast Iran as a MPM case study for porphyry-Cu deposits.  相似文献   

7.
In this paper, we describe new fuzzy models for predictive mineral potential mapping: (1) a knowledge-driven fuzzy model that uses a logistic membership function for deriving fuzzy membership values of input evidential maps and (2) a data-driven model, which uses a piecewise linear function based on quantified spatial associations between a set of evidential evidence features and a set of known mineral deposits for deriving fuzzy membership values of input evidential maps. We also describe a graphical defuzzification procedure for the interpretation of output fuzzy favorability maps. The models are demonstrated for mapping base metal deposit potential in an area in the south-central part of the Aravalli metallogenic province in the state of Rajasthan, western India. The data-driven and knowledge-driven models described in this paper predict potentially mineralized zones, which occupy less than 10% of the study area and contain at least 83% of the model and validation base metal deposits. A cross-validation of the favorability map derived from using one of the models with the favorability map derived from using the other model indicates a remarkable similarity in their results. Both models therefore are useful for predicting favorable zones to guide further exploration work.  相似文献   

8.
This paper presents an AHP–Shannon Entropy weighting approach as a new hybrid method for assigning evidential weights in mineral potential mapping. For demonstrating the proposed method, a case study was selected for porphyry-Cu potential mapping in Markazi Province, Iran. Then, geo-datasets were gathered, and evidence layers were generated for integration by TOPSIS method (via combination of AHP–Shannon Entropy weighting). Finally, the output mineral potential map was evaluated by field checking and chemical analysis of samples. Two outcrops with evidence of a porphyry system were encountered in areas with high potential values. In addition, there was good correlation between high potential values and Cu content of samples taken from the field. Hence, the usefulness of the AHP–Shannon Entropy weighting of evidence for MPM was demonstrated.  相似文献   

9.
Quantitative prediction and evaluation of mineral resources are one of the important topics of mathematical geology. On the basis of GIS technologies and weights of evidence modeling, MapGIS is integrated with GIS and mineral-resource prediction and evaluation. The final product is a predictor map of posterior probabilities of occurrence of the discrete event within a small unit cell. Predictor layers were created on a digital database that includes 1:200,000 scale geological, and geochemical, and geophysical maps, and remote-sensing images in study area. According to metallogenetic factors extractiont and weights of evidence modeling, there are four main metal ore belts in the study area: (1) the Batang belt; (2) the Lei Wuqi belt; (3) the Basu-Chayu belt; and (4) the Ganzi-Litang belt. The predictor map of posterior probabilities show that 29% of study area as zones with potential for porphyry copper, and 81% known mineral occurrences success rate is circled in the metallogenetic posterior probabilities map. The results demonstrate plausibility of weights-of-evidence modeling of mineral potential in large areas with small number of mineral prospects.  相似文献   

10.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   

11.
Asymmetric fuzzy relation analysis method for ranking geoscience variables   总被引:1,自引:0,他引:1  
A fuzzy relation analysis method is used to derive weights for qualitative variables based on their partial order relations. Two asymmetric measure indexes (incidence coefficient and probability difference) are proposed to measure the asymmetric associations between geoscience variables from which the partial order relations can be constructed. The fuzzy relation analysis method can be implemented in combination with the asymmetric measure indexes leading to new methods for pattern overlay and data integration in mineral potential prediction. Two types of models are proposed and illustrated by two artificial examples: one for predicting targets for undiscovered deposits, and the other for estimating the mineral resource potential of the targets.  相似文献   

12.

In data-driven mineral prospectivity mapping, a statistical model is established to represent the spatial relationship between layers of metallogenic evidence and locations of known mineral deposits, and then, the former are integrated into a mineral prospectivity model using the established model. Establishment of a data-driven mineral prospectivity model can be regarded as a process of searching for the optimal integration of layers of metallogenic evidence in order to maximize the spatial relationship between mineral prospectivity and the locations of known mineral deposits. Mineral prospectivity can be simply defined as the weighted sum of layers of metallogenic evidence. Then, the optimal integration of the layers of evidence can be determined by optimizing weight coefficients of the layers of evidence to maximize the area under the curve (AUC) of the defined model. To this end, a bat algorithm-based model is proposed for data-driven mineral prospectivity mapping. In this model, the AUC of the model is used as the objective function of the bat algorithm, and the ranges of the weight coefficients of layers of evidence are used to define the search space of the bat population, and the optimal weight coefficients are then automatically determined through the iterative search process of the bat algorithm. The bat algorithm-based model was used to map mineral prospectivity in the Helong district, Jilin Province, China. Because of the high performance of the traditional logistic regression model for data-driven mineral prospectivity mapping, it was used as a benchmark model for comparison with the bat algorithm-based model. The result shows that the receiver operating characteristic (ROC) curve of the bat algorithm-based model is coincident with that of the logistic regression model in the ROC space. The AUC of the bat algorithm-based model (0.88) is slightly larger than that of the logistic regression model (0.87). The optimal threshold for extracting mineral targets was determined by using the Youden index. The mineral targets optimally delineated by using the bat algorithm-based model and logistic regression model account for 8.10% and 11.24% of the study area, respectively, both of which contain 79% of the known mineral deposits. These results indicate that the performance of the bat algorithm-based model is comparable with that of the logistic regression model in data-driven mineral prospectivity mapping. Therefore, the bat algorithm-based model is a potentially useful high-performance data-driven mineral prospectivity mapping model.

  相似文献   

13.
小城镇灾害易损性熵权与可变模糊集评估方法研究   总被引:1,自引:0,他引:1  
为了客观评估小城镇的灾害易损性,提出一种熵权和可变模糊集组合评估方法.采用熵值法确定小城镇灾害易损性评估指标的权重,采用可变模糊集理论建立小城镇灾害易损性评估模型,并以湖南省小城镇为例,进行了相关研究.研究表明:熵值法通过挖掘统计数据的熵来确定评估指标的熵权,所确定的权重是客观的;可变模糊集通过相对隶属度和相对差异函数确定综合相对隶属度,并通过参数组合变换验证了评估方法的可靠性.因而熵权和可变模糊集组合评估是小城镇灾害易损性评估的一种有效方法.  相似文献   

14.
Mineral-potential mapping is the process of combining a set of input maps, each representing a distinct geo-scientific variable, to produce a single map which ranks areas according to their potential to host mineral deposits of a particular type. The maps are combined using a mapping function that must be either provided by an expert (knowledge-driven approach), or induced from sample data (data-driven approach). Current data-driven approaches using multilayer perceptrons (MLPs) to represent the mapping function have several inherent problems: they are highly sensitive to the selection of training data; they do not utilize the contextual information provided by nondeposit data; and there is no objective interpretation of the values output by the MLP. This paper presents a new approach by which MLPs can be trained to output values that can be interpreted strictly as representing posterior probabilities. Other advantages of the approach are that it utilizes all data in the construction of the model, and thus eliminates any dependence on a particular selection of training data. The technique is applied to mapping gold mineralization potential in the Castlemaine region of Victoria, Australia, and results are compared with a method based on estimating probability density functions.  相似文献   

15.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   

16.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

17.
Wang  Ziye  Zuo  Renguang  Dong  Yanni 《Natural Resources Research》2019,28(4):1285-1298

Extracting geochemical anomalies from geochemical exploration data is one of the most important activities in mineral exploration. Geochemical anomaly detection can be regarded as a binary classification problem. The similarity between geochemical samples can be measured by their distance. The key issue of this classification is to find the intrinsic relationship and distance between geochemical samples to separate geochemical anomalies from background. In this paper, a hybrid method that integrates random forest and metric learning (RFML) is used to identify geochemical anomalies related to Fe-polymetallic mineralization in Southwest Fujian Province of China. RFML does not require any specific statistical assumption on geochemical data, nor does it depend on sufficient known mineral occurrences as the prior knowledge. The geochemical anomaly map obtained by the RFML method showed that the known Fe deposits and the generated geochemical anomaly area have strong spatial association. Meanwhile, the receiver operating characteristic curves for the results of RFML and another method, namely maximum margin metric learning, indicated that the RFML method exhibited better performance, suggesting that RFML can be effectively applied to recognize geochemical anomalies.

  相似文献   

18.
《自然地理学》2013,34(2):130-153
Contamination of ground water has been a major environmental concern in recent years. The potential for ground-water contamination by pesticides depends on porous media, solute, and hydrologic parameters. Although sophisticated deterministic computer models are available for assessing aquifer-contamination potential on a site-by-site basis, most deterministic models are too complex for vulnerability assessment on a regional scale because they require input data that are spatially and temporally variable, and which may not be available at this scale. Therefore, development of an affordable model that is robust under conditions of uncertainty at the watershed scale with minimum input of field data becomes a useful ground-water management tool. The purpose of this study was to examine the usefulness of fuzzy rule-based techniques in predicting aquifer vulnerability to pesticides at the regional scale. The objectives were to (1) develop fuzzy rule-based models using the same input parameters contained in an index-based model (i.e., the modified DRASTIC model), (2) determine the sensitivity of fuzzy rule model predictions, (3) compare the outputs of the fuzzy rule-based models with those of the modified DRASTIC model and with the results of aquifer water-quality analyses, and (4) examine the spatial variability of field parameters around contaminated wells of the Alluvial aquifer in Woodruff County Arkansas. The fuzzy rule-based model for objective (1) was developed using similar parameter weights and ratings as the modified DRASTIC model. For objective (2), fuzzy rule-based models were created using fewer parameters than the modified DRASTIC model. Sensitivity of the fuzzy rule-based models was determined using different combinations of weights of the four input parameters in DRASTIC. It was found that variations in the weights of the input parameters and number of fuzzy sets influenced the location of the aquifer-vulnerability categories as well as the area within each fuzzy category. The fuzzy rule models tended to predict somewhat higher vulnerabilities of the Alluvial aquifer than the modified DRASTIC model. The fuzzy rule base that had the soil-leaching index (S) as the highest weight was chosen as the best fuzzy rule model in predicting potential contamination by pesticides of the aquifer. In general, the fuzzy rule models tended to overestimate the vulnerability of the aquifer in the study area.  相似文献   

19.
传统的制图数据分级方法存在对原始数据信息的歪曲、普适性不强及计算复杂等问题。基于此,结合现实分级问题的模糊性,提出基于模糊统计分析模型的制图数据分级处理方法。首先通过专家系统获取各模糊样本集,利用统计分析方法求得样本分布函数;然后利用分布函数获得模糊隶属函数,进而求取各模糊集的最模糊点;最后根据最模糊点获得各模糊集的区域划分,从而实现对制图数据的分级处理。该方法不需要对影响级别划分的多因子进行分析和转换,降低了计算的复杂度;另外,该方法是在获得原始数据实际分布的基础上进行的,在后续的分级过程中避免了对原始数据信息的歪曲。  相似文献   

20.
This paper presents mineral prospectivity mapping to identify potential new exploration ground for polymetallic Sn–F–REE mineralization associated with the Bushveld granites of the Bushveld Igneous Complex, South Africa. The Lebowa Granite Suite, commonly known as the Bushveld granites, is host to a continuum of polymetallic mineralization with a wide range of metal assemblages (Sn–Mo–W–Cu–Pb–Zn–As–Au–Ag–Fe–F–U–REE), ranging from a high-temperature to a low-temperature magmatic hydrothermal mineralizing environment. The prospectivity map was generated by fuzzy logic modeling and a selection of targeting criteria (or spatial proxies) based on a conceptual mineral system highlighting critical processes responsible for the formation of the polymetallic mineralization. The spatial proxies include proximity to differentiated granites (as heat and metal-rich fluid sources), Rb geochemical map (fluid-focusing mechanism such as fractionation process), principal component maps (PC 4 Y–Th and PC 14 Sn–W, fluid pathways for both high- and low-temperature mineralization) and proximity to roof rocks (traps for fluids). Logarithmic functions were used to rescale rasterized evidential maps into continuous fuzzy membership scores in a range of [0, 1]. The evidential maps were combined in two-staged integration matrix using fuzzy AND, OR and gamma operators to produce the granite-related polymetallic Sn–F–(REE) prospectivity map. The conceptual mineral system model and corresponding prospectivity model developed in this study yielded an encouraging result by delineating the known mineral deposits and occurrences of Sn–F–(REE) mineralization that were not used to assign weights to the evidential maps. The prospectivity model predicted, on average, 77% of the known mineral occurrences in the BIC (i.e., 56 of 73 Sn occurrences, 12 of 15 F occurrences and 6 of 8 REE occurrences). Based on this validation, 13 new targets were outlined in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号