首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

2.
The quality of the Ordovician carbonate reservoir beds in the Tarim Basin is closely related to the development of secondary pores,fractures and cavities. Karstification is important in improving the properties of reservoir beds,and karstification related to unconformity has caught wide attention. Compared with the recent research on the unconformity karst reservoir bed improvement,this paper shows a new way of carbonate reservoir bed transformation. Based on field survey,core and slices observation,transformation of Ordovician carbonate reservoir beds by faulting can be classified into three types: (1) Secondary faults and fracturs generated by faulting improved carbonate reservoir bed properties,which were named the Lunnan or Tazhong82 model; (2) upflow of deep geothermal fluids caused by faulting,with some components metasomatizing with carbonate and forming some secon-dary deposit,such as fluorite. It can improve carbonate reservoir bed properties obviously and is named the Tazhong 82 model; and (3) the faulting extending up to the surface increased the depth of supergene karstification and the thickness of reservoir bed. It is named the Hetianhe model. Trans-formation effect of carbonate reservoir beds by faulting was very significant,mainly distributed on the slopes or on the edge or plunging end of the uplift.  相似文献   

3.
Affected by structural uplift,the Ordovician carbonate rockbed in the Tarim Basin,China,was exposed to dissolution and reformation of atmospheric precipitation many times,and formed a large quantity of karst caves serving as hydrocarbon reservoir.However,drilling in Tahe area showed that many large karst caves,small pores and fractures are filled by calcite,resulting in decrease in their reservoir ability.Calcite filled in the karst caves has very light oxygen isotopic composition and87Sr/86Sr ratio.Its 18OPDB ranges from 21.2‰to 13.3‰with the average of 16.3‰and its87Sr/86Sr ratio ranges from0.709561 to 0.710070 with the average of 0.709843.The isotope composition showed that calcite is related to atmospheric precipitation.Theoretic analyses indicated that the dissolving and filling actions of the precipitation on carbonate rocks are controlled by both thermodynamic and kinetic mechanisms.Among them,the thermodynamic factor determines that the precipitation during its flow from the earth surface downward plays important roles on carbonate rocks from dissolution to saturation,further sedimentation,and finally filling.In other words,the depth of the karstification development is not unrestricted,but limited by the precipitation beneath the earth surface.On the other hand,the kinetic factor controls the intensity,depth,and breadth of the karstification development,that is,the karstification is also affected by topographic,geomorphologic,climatic factors,the degree of fracture or fault,etc.Therefore,subject to their joint effects,the karstification of the precipitation on the Ordovician carbonate rocks occurs only within a certain depth(most about 200 m)under the unconformity surface,deeper than which carbonate minerals begin to sedimentate and fill the karst caves that were formed previously.  相似文献   

4.
In the Ordovician, a carbonate platform system grading from the platformal interior eastwards to basin was developed in the Tazhong area of the Tarim Basin, and the study column is located in the place where the paleoslope occurred. The isotope compositions of the carbonates there are thus considered as having reflected those of simultaneous sea waters in view of its good connection with the open seas. The carbon and strontium isotope compositions of the Ordovician carbonates in the Tazhong area are analyzed, and their relationships to the sea-level fluctuations are discussed as well. Studies have revealed that the carbon isotope composition is related positively with the sea-level fluctuations, whereas an opposing situation occurs to the strontium isotope variation. Similar responses of carbon and strontium isotope compositions to the sea-level fluctuations are reported elsewhere in the world, suggesting that the Ordovician sea-level fluctuations of the Tarim Basin were of eustatic implication.  相似文献   

5.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

6.
Although 1-alkyl-2,3,6-trimethylbenzenes and a high relative amount of 1,2,3,4-tetramethylbenzene have been detected in marine oils and oil asphaltenes from Tabei uplift in the Tarim Basin, their bio-logical sources are not determined. This paper deals with the molecular characteristics of typical ma-rine oil asphaltenes from Tabei and Tazhong uplift in the Tarim Basin and the stable carbon isotopic signatures of individual compounds in the pyrolysates of these asphaltenes using flash pyrolysis-gas chromatograph-mass spectrometer (PY-GC-MS) and gas chromatograph-stable isotope ratio mass spectrometer (GC-C-IRMS), respectively. Relatively abundant 1,2,3,4-tetramethylbenzene is detected in the pyrolysates of these marine oil asphaltenes from the Tarim Basin. δ 13C values of 1,2,3,4-tetrame-thylbenzene in the pyrolysates of oil asphaltenes vary from-19.6‰ to-24.0‰, while those of n-alkanes in the pyrolysates show a range from-33.2‰ to-35.1‰. The 1,2,3,4-tetramethylbenzene in the pyro-lysates of oil asphaltenes proves to be significantly enriched in 13C relative to n-alkanes in the pyro-lysates and oil asphaltenes by 10.8‰―15.2‰ and 8.4‰―13.4‰, respectively. This result indicates a contribution from photosynthetic green sulfur bacteria Chlorobiaceae to relatively abundant 1,2,3,4-tetramethylbenzene in marine oil asphaltenes from the Tarim Basin. Hence, it can be speculated that the source of most marine oil asphaltenes from the Tarim Basin was formed in a strongly reducing water body enriched in H2S under euxinic conditions.  相似文献   

7.
Based on comprehensive studies in petrography, petrofabric analysis and geochemistry, this paper describes a unique and rare laminated micritic ferruginous primary dolostone crystallized and precipitated from the alkaline hot brine under the conditions of the Mesozoic faulted lake basin. The main rock-forming mineral of this dolostone is ferruginous dolomite with a micritic structure. This dolomite mostly exhibits laminae of 0.1–1 mm thick and is often discovered with other minerals, such as albite, analcite, barite and dickite, which have at least two types of interbedded laminae. Petrogeochemistry reveals that this dolostone contains a large number of typomorphic elements of hydrothermal sedimentation, including Sb, Ba, Sr, Mn, and V. In addition, the LREE is in relatively high concentrations and possesses the typical REE distribution pattern with negative Eu anomaly. Oxygen isotope values (δ18OPDB) range from 5.89‰ to 14.15‰ with an average of 9.69‰. The ratio of 87Sr/86Sr is between 0.711648 and 0.719546, with an average of 0.714718. These data indicate that the depositional environment is a stable, blocked, anoxic low-lying hot brine pool in the bottom of deep lake controlled by basement faults. The hydrothermal fluid is the alkaline hot brine formed by the combination of the infiltration lake water and mantle-derived magmatic water, consisting of many ions, including Ca2+, Mg2+ and Fe2+. Under the driving flow power of magmatic heat, gravity and compaction, the hydrothermal fluid overcame the overburden pressure and hydrostatic pressure of the lake water body, and boiled to explosion, and then the explosion shattered the original laminated micritic ferruginous primary dolostone near the vent and then formed a new type of dolostone called shattered “hydroexplosion breccias”. In the low-lying, unperturbed hot brine pool, far from the vent, the laminated micritic ferruginous primary dolostone was quickly crystallized and chemicals precipitated from the hydrotherm. This study of special rocks contributes to research into the causes of the formation of lacustrine carbonate rocks and dolostone. In particular, it provides new examples and research insights for future studies of the lacustrine dolomite from the similar Mesozoic and Cenozoic basins in China.  相似文献   

8.
Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C21/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.  相似文献   

9.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   

10.
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7–14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in δ13C (−33.85‰ to −39.53‰ Peedee Belemnite (PDB)) and were enriched in δ18O (5.16–5.60‰ PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched 18O levels. Furthermore, the strongly depleted δ13C values (−60.7‰ to −61.6‰ PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments.  相似文献   

11.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

12.
By using fluorescence lifetime image microscope (FLIM) and time-correlated single photon counting (TCSPC) technique, we measured fluorescence lifetime of crude oils with density of 0.9521–0.7606 g/cm3 and multiple petroleum inclusions from Tazhong uplift of Tarim Basin. As indicated by the test results, crude oil density is closely correlated with average fluorescence lifetime following the regression equation Y=–0.0319X+0.9411, which can thus be used to calculate density of oil inclusions in relation to fluorescence lifetime and density of corresponding surface crude. For type A oil inclusions showing brown-yellow fluorescence from Tazhong 1 well in Tarim Basin, their average fluorescence lifetime was found to be 2.144–2.765 ns, so the density of surface crude corresponding to crude trapping these oil inclusions is 0.852–0.873 g/cm3, indicating that they are matured oil inclusions trapped at earlier stage of oil formation. For type B oil inclusions with light yellow-white fluorescence, their average fluorescence lifetime was found to be 4.029–4.919 ns, so the density of surface crude corresponding to crude trapping these oil inclusions is 0.784–0.812 g/cm3, indicating that they are higher matured oil inclusions trapped at the second stage of oil formation. For type C oil inclusions showing light blue-green fluorescence, their average fluorescence lifetime was found to be 5.063–6.168 ns, so the density of surface crude corresponding to crude trapping these oil inclusions is 0.743–0.779 g/cm3, indicating that they are highly-matured light oil inclusions trapped at the third stage of oil formation.  相似文献   

13.
Nitrogen occupies a high content in crust and in atmospheric circle. It is one of the main elements in organism and an important element in sedimentary circle. Although nitrogen is little in crude oil, to a cer-tain degree, it influences the physical and chemical properties of oil, such as viscosity and density[1]. In reservoir the nitrogen-bearing compounds can form ion bonds or hydrogen bonds with substances on rock and form van der Vaals’ force among moleculae so they affect and alter the …  相似文献   

14.
An igneous intrusion of 94m thick was discovered intruding into the Silurian sandstone from Tazhong 18 Well. The petroleum previously preserved in the Silurian sandstone reservoir was altered into black carbonaceous bitumen by abnormally high heat stress induced by the igneous intrusion. The reflectance of the carbonaceous bitumen reaches as high as 3.54%, indicating that the bitumen had evolved into a high thermal evolution level. Similar to the Silurian samples from the neighboring Tazhong 11, Tazhong 12, Tazhong 45 and Tazhong 47 wells, the distribution of C27, C28 and C29 steranes of the carbonaceous bitumen is still “V”-shaped and can still be employed as an efficient parameter in oil source correlation. The “V”-shaped distribution indicates that the hydrocarbons from the Tazhong 18 and the neighboring wells were all generated from the Middle-Upper Ordovician hydrocarbon source rocks. However, the oil source correlation parameters associated with and terpanes had been changed greatly by the high heat stress and can no longer be used in oil source correlation. The δ 13C values of the petroleum from the neighboring wells are between −32.53%. and −33.37%., coincident with those of the Paleozoic marine petroleum in the Tarim Basin. However, the δ 13C values of the carbonaceous bitumen from the Tazhong 18 Well are between −27.18%. and −29.26%., isotopically much heavier than the petroleum from the neighboring wells. The content of light hydrocarbons (nC14nC20) of the saturated hydrocarbon fraction in the carbonaceous bitumen is extremely higher than the content of heavy hydrocarbons. The light/heavy hydrocarbon ratios (ΣnC21 nC22 + are between 4.56 and 39.17. In the saturated fraction, the even numbered hydrocarbons are predominant to the odd numbered, and the OEP (Odd to Even Predominance) values are between 0.22 and 0.49. However, the content of light hydrocarbons in the petroleum from the neighboring wells is relatively low and the content of the even numbered hydrocarbons is almost equal to that of the odd numbered. Compared with the samples from the neighboring wells, the abundance of non-alkylated aromatic hydrocarbons, such as phenanthrenes, and polycyclic aromatic hydrocarbons (PAHs), such as fluoranthane, pyrene, benzo[a]anthracene and benzofluoranthene, are relatively high. Supported by the National Key Basic Research and Development Project (Grant No. 2005CB422103)  相似文献   

15.
(U-Th)/He热定年技术是近年来用于沉积盆地热史研究的新技术,目前主要是利用磷灰石和锆石的He年龄来揭示地层的构造抬升和热历史.本文依据塔里木盆地钻井样品的实测磷灰石和锆石(U-Th)/He年龄数据,初步得出了该地区磷灰石(U-Th)/He年龄的封闭温度为85℃,并建立了深度/温度-年龄演化模式;锆石则未达到其较高的封闭温度.综合利用本次实测的He年龄数据结合磷灰石裂变径迹和等效镜质组反射率等古温标,模拟计算了塔里木盆地孔雀1井(KQ1)自奥陶纪末期以来的热历史.模拟结果表明,孔雀1井区奥陶纪末期的地温梯度可达35.5℃/km,志留纪—泥盆纪时期的地温梯度为33.3~34.5℃/km,白垩纪末期地温梯度27.6℃/km左右.因此,(U-Th)/He年龄结合其他古温标综合模拟的方法可以很好地揭示沉积盆地的热历史.特别是该技术为缺乏常规古温标的塔里木盆地下古生界碳酸盐岩层系所经受热史的恢复提供了新的方法.  相似文献   

16.
Inclined eastward and consisting of the Hetianhe, Hetianhedong, Tazhong paleouplifts and Bachu paleoslope, the central paleouplift belt in the Tarim Basin was a large composite paleouplift and paleoslope belt with complicated palaeogeomorphic features during the Middle to early Late Ordovician. A number of paleostructural geomorphic elements have been identified in the paleouplift belt and surrounding areas, such as the high uplift belts, the faulted uplift platforms, the marginal slopes and slope break zones flanking the paleouplift belt, the surrounding shelf slopes or low relief ramps, the shelf slope break zones and deep basin plains. They exerted great influence on the development of paleogeography of the basin. The marginal slopes and slope break zones flanking the uplift belt constrained the formation and deposition of the high-energy facies including reefal and shoal deposits during the Late Ordovician, which comprise the major reservoirs of the Lower Paleozoic in the basin. Toward the end of the Ordovician, the Tazhong paleouplift hinged westward and became a westward-dipped nose as the southeastern margin of the basin was strongly compressed and uplifted. The tectono-paleogeomorphic framework of the central northern basin during the Early Silurian and the Late Devonian to Early Carboniferous changed remarkably in topography from the initial low in east and high in west to high in northeast and low in southwest. The major paleogeomorphic elements developed in these periods included the strong eroded uplift high, the uplift marginal slope, the gentle ramp of the depression margin and the depression belt. The sandstones of the lowstand and the early transgressive systems tracts were deposited along the uplift marginal slopes and the gentle ramps of the depressions comprise the prolific reservoirs in the basin. The study indicates that the distribution patterns of the unconformities within the basin are closely related to the paleogeomorphic features and evolution of the paleouplift belt. From the high uplift belt to the depression, we found the composed unconformity belts at the high uplift, the truncated and onlap triangular unconformity belts along the uplift marginal slopes, the minor angular unconformity or discontinuity belts along the transitional zones from the uplift marginal slopes to depression and the conformity belt in the central depression. The truncated and the onlap triangular unconformity belts are the favorable zones for the formation of stratigraphic trap reservoirs. Supported by National Basic Research Program of China (Grant No. 2006CB202302), National Natural Science Foundation of China (Grant No. 40372056) and Frontier Research Project of Marine Facies  相似文献   

17.
The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core.Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole.Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20°C less than the present measured temperature curve at 590.1-m depth to as much as 90°C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114° and 265°C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120° to 200°C) as the fluid-inclusion Thvalues for barite. Fluid-inclusion Th values for calcite range between about 136° and 213°C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole.  相似文献   

18.
Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rockphysics models do not describe the relation between velocity and porosity for the Tarim Basin carbonates well. We propose the porous-grain-upper-boundary (PGU) model for estimating the relation between velocity and porosity for low-porosity carbonates. In this model, the carbonate sediments are treated as packed media of porous elastic grains, and the carbonate pores are divided into isolated and connected pores The PGU model is modified from the porous-grain-stiff-sand (PGST) model by replacing the critical porosity with the more practical isolated porosity. In the implementation, the effective elastic constants of the porous grains are calculated by using the differential effective medium (DEM) model. Then, the elastic constants of connected porous grains in dry rocks are calculated by using the modified upper Hashin-Shtrikman bound. The application to the Tarim carbonates shows that relative to other conventional effective medium models the PGU model matches the well log data well.  相似文献   

19.
In 2013, a great breakthrough of deep petroleum exploration was achieved in the Cambrian pre-salt intervals of Wells Zhongshen1 (ZS1) and Zhongshen1C (ZS1C), Tazhong Uplift. However, the hydrocarbon discovery in the Cambrian pre-salt intervals has triggered extensive controversy regarding the source of marine oils in the Tarim Basin. The geochemistry and origin of the Cambrian pre-salt hydrocarbons in Wells ZS1 and ZS1C were investigated using GC, GC-MS and stable carbon isotope technique. These hydrocarbons can be easily distinguished into two genetic families based on their geochemical and carbon isotopic compositions. The oil and natural gases from the Awatage Formation of Well ZS1 are derived from Middle- Upper Ordovician source rocks. In contrast, the condensate and gases from the Xiaoerbulake Formation of Wells ZS1 and ZS1C probably originate from Cambrian source rocks. The recent discovery of these hydrocarbons with two different sources in Wells ZS1 and ZS1C suggests that both Middle-Upper Ordovician-sourced hydrocarbons and Cambrian-sourced petroleums are accumulated in the Tazhong Uplift, presenting a great exploration potential.  相似文献   

20.
The values of the helium isotopes in the inclusions of the Ordovician reservoir rocks in the Kongxi buried hill belt in the Huanghua depression were first measured and the source of helium and its geological significance were investigated in comparison with those of the helium isotopes in the conclusions in the Ordovician rocks in the Ordos basin and the Tarim basin. The input of the mantle-derived helium into the inclusions in the carbonate reservoir rocks was found from the Konggu 3 well, the Konggu 4 well, and the Konggu 7 well in the Kongxi buried hill belt. The 3He/4He and R/Ra in the conclusions in the Ordovician oil-bearing reservoir rocks in the Konggu 7 well average 2.54×10-6(3) (sample quantity, the same below) and 1.82(3), respectively. The percent of the mantle-derived helium in the inclusions of the reservoir rocks in the Konggu 7 well reaches up to an average of 23.0%(3). The age of the contribution of the mantle-derived helium to the inclusions in the Kongxi buried hill belt is in the La  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号