首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
基于等效线性化的一维土层地震反应计算是目前国内外普遍采用的方法,国外的SHAKE91、DEEPSOIL和我国的LSSRLI-1即是根据这一方法编制的通用计算程序。本文采用这3个程序进行了不同地震波、不同输入地震动幅值下不同场地类型的土层地震反应计算,并对三者的结果进行了全面的比较分析。结果表明:①SHAKE91和DEEPSOIL程序的计算结果完全相同;②当土层最大剪应变均采用时域计算时,LSSRLI-1程序的计算结果与SHAKE91和DEEPSOIL程序基本相同,但有微小差别,其原因是:在基于等效剪应变通过离散形式的剪切模量和阻尼比随等效剪应变变化的关系曲线确定等效剪切模量和阻尼比时,DEEPSOIL和SHAKE91采用的插值方法与LSSRLI-1不同;③当LSSRLI-1程序采用频域经验关系计算土层最大剪应变时,特别是在强地震动输入下得到的土层地表加速度峰值和加速度反应谱与另外两个程序的计算结果有差别,且土层最大剪应变随着输入加速度的增大出现较大的差别。因此,本文建议:当采用LSSRLI-1程序计算土层地震响应时,应使用程序中的时域解方法代替以往默认的频域经验关系方法。  相似文献   

2.
利用日本Ki K-net强震动观测台网数据库中巨厚土层的井下地震记录,对新研发基于频率一致等效线性化的一维土层地震反应计算方法 SOILQUAKE16以及当今国际上两种代表性一维土层地震反应计算方法 SHAKE2000和DEEPSOIL5.0在巨厚场地的可靠性进行对比检验。检验工况包括了土层厚度分别是215 m和148 m两个台阵,取其中地表峰值加速度不小于0.02 g的60台次水平地震加速度记录,地表峰值加速度范围为0.024~0.425 g,加速度峰值放大系数2.76~4.01。对比检验结果表明:烈度6度和7度偏下的较弱地震动下,SOILQUAKE16、SHAKE2000和DEEPSOIL5.0四个方法结果精度相当,计算出地表PGA与加速度反应谱均与实际较为接近,此时几种方法皆可采用;烈度7度中上、8度和9度的较强地震动下,DEEPSOIL5.0和SHAKE2000计算出的地表PGA较实际记录偏小,且随地震动强度增加与实测结果差距急剧增大,甚至小于井下输入,加速度反应谱"矮粗胖"不合理现象严重,不宜采用;而SOILQUAKE16计算出的地表PGA和反应谱均与实际记录相当,克服了以上弱点,可体现出深厚土层的放大作用,建议采用。SOILQUAKE16计算程序现已通过网络平台http://www.soilquake.org.cn提供共享服务。  相似文献   

3.
等效线性场地响应程序对比研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了评价4种等效线性场地响应软件的适用性,选取深厚场地作为研究对象,将基岩地震波作为地震输入,根据土层剪切波波速和容重确定初始剪切模量并设置对应的模量衰减和阻尼比曲线,分别用SHAKE 2000、 DEEPSOIL、EERA和Strata 4种等效线性场地响应程序计算得到地表的加速度时程及相应的加速度反应谱和傅里叶幅值谱\,场地的最大剪应变和峰值加速度随深度的变化曲线。计算结果表明,由4种场地响应软件得到的地表加速度时程对应的加速度反应谱和傅里叶幅值谱一致,由于土层划分方式不同,Strata软件得到的峰值加速度和最大剪应变深度曲线不同。总结4种软件的不同,DEEPSOIL可以较全面考虑土的动力特性,Strata提供随机振动理论进行场地响应分析并可以考虑土层参数的变异性。  相似文献   

4.
地震过程中震动传播的局部场地效应通常用一维的场地反应分析方法来考虑,目前使用最多的是线性、等效线性化和非线性三类,其中国内外分别以LSSRLI-1和SHAKE2000为代表的等效线性化程序使用最为广泛。LSSRLI-1是我国地震安全评价程序,提出已有20多年,为我国的防震减灾事业做出了巨大贡献,但也在实践过程中表现出了一些缺点和不足,是否可以改进有待研究。本文以经典波动理论为基础编制了相应的土层反应分析线性计算程序,并与LSSRLI-1和SHAKE2000就硬和软两种场地上地表加速度反应谱和土体剪应变分布进行了对比分析,考虑了不同输入波以及不同震动强度对分析结果的影响,也讨论了土体剪应变计算偏差对地表反应谱的影响。结果表明:硬和软场地上SHAKE2000计算出地表加速度反应谱和土体剪应变分布均符合较好;硬和软场地上传递函数计算中LSSRLI-1、SHAKE2000和精确解三者一致;硬场地上LSSRLI-1计算所得土体剪应变分布同SHAKE2000和精确解相比偏差很小且对反应谱的影响可以忽略;某些情况下,软场地上LSSRLI-1计算出的土体剪应变分布同SHAKE2000和精确解相比明显偏大,该偏差会导致地表响应显著偏小,说明LSSRLI-1用于软场地地震反应分析时其剪应变求解方法有待改进。  相似文献   

5.
根据我国建筑抗震设计规范中场地的分类原则,确定日本KiK-net中台站的场地类别。运用SHAKE2000和LSSRLI-1对不同类别场地的峰值加速度、反应谱、剪应变等进行计算,给出Ⅰ~Ⅳ类场地的计算结果,并将计算结果进行汇总后进行对比分析,得到不同场地条件下SHAKE2000和LSSRLI-1计算结果的差异以及计算结果与实测记录之间的差别。研究表明,土的动模量比、阻尼比的非线性以及场地类型对计算结果影响较大,Ⅰ、Ⅱ类场地中大多数情况下SHAKE2000和LSSRLI-1计算结果相差不大;Ⅲ、Ⅳ类场地中多数情况下SHAKE2000和LSSRLI-1计算结果相差不大。以实测记录为基准,SHAKE2000结果好于LSSRLI-1计算结果,特别是对于Ⅲ、Ⅳ类场地中,土体为强非线性工况而言,SHAKE2000结果要明显好于LSSRLI-1计算结果。初步分析表明,SHAKE2000与LSSRLI-1计算结果差异来自于计算剪应变的不同。  相似文献   

6.
为定量评价一维土层地震反应分析方法的计算加速度反应谱和实测记录之间的差距,收集整理2 418组DEEPSOIL、SHAKE2000、SOILQUAKE和SOILRESPONSE四种一维数值模拟方法的计算加速度反应谱,并以日本KiK-net强震台网的实测记录为基准,验证动态时间规整(Dynamic Time Warping, DTW)算法用于定量评价反应谱差距大小的适用性,对比分析不同场地类别和不同地表峰值加速度(Peak Ground Acceleration, PGA)区间的实测和计算加速度反应谱之间的DTW距离。结果表明:Ⅱ类场地下,PGA小于0.2g时,四种方法的平均DTW距离相差不大,PGA大于0.2g时SOILQUAKE方法的平均DTW距离较小;Ⅲ类场地下,PGA小于0.2g时DEEPSOIL方法的平均DTW距离较小,PGA大于0.2g时SOILRESPONSE方法的平均DTW距离较小;Ⅳ类场地下,PGA小于0.1g时DEEPSOIL方法的平均DTW距离较小,PGA大于0.1g时SOILRESPONSE方法的平均DTW距离较小;不同场地类别下,四种方法的DTW距离均随PGA的...  相似文献   

7.
LSSRLI-1与SHAKE2000是目前国内外等效线性化地震反应分析程序的代表。将LSSRLI-1和SHAKE2000对软土场地进行计算对比,比较加速度峰值、反应谱和剪应变,分析其异同,研究存在的差异及原因,讨论剪应变与加速度峰值和反应谱的相关性,以指导方法和程序的改进。研究结果表明:2个程序计算出的PGA和反应谱结果在某些情况下存在不可忽视的差异,大部分情况下SHAKE2000计算出的PGA要大于LSSRLI-1的结果,在0~3s周期段内大部分情况下SHAKE2000的反应谱大于LSSRLI-1的结果;2个程序计算出的剪应变存在较大差异,LSSRLI-1计算出的的剪应变明显比SHAKE2000大;2个程序计算出的PGA、平均谱值比相对差与剪应变相对差存在相关性,不考虑非线性下,两个程序计算出的地表加速度反应谱基本没有差异,计算地震动的算法应相同;但计算剪应变的结果不同,导致考虑土层非线性的迭代计算结果出现差异。  相似文献   

8.
以日本KiK-net强震观测台网中硬场地井下记录为样本,对传统等效线性化方法LSSRLI-1(频域)、SHAKE2000,时域非线性方法DEEPSOIL和频域一致等效线性化方法SOILQUAKE等几种计算程序在硬土场地地震反应分析中的可靠性进行对比检验。检验工况包括KiK-net井下台网中地表峰值加速度不小于0.05g的水平硬场地的总计344台次的加速度记录,涉及5个台站,土层厚度6~50m,地表峰值加速度范围0.050~0.805g。结果表明:认为硬土场地以往计算方法能够体现土层放大的认识是片面的,在中强地震动情况下,现有流行方法计算出的地表响应会偏小,强地震动下会严重偏小,会给工程抗震设计提供偏于危险的输入;硬场地中烈度8度以下(地表PGA在0.19g以下),SHAKE2000和DEEPSOIL、LSSRLI-1(频域)计算结果与实际记录差距可以接受,但烈度8度以上,计算出地表响应均较实际记录明显偏小,且随地震动强度增加差距急剧增大;硬场地中,无论何种烈度,SOILQUAKE16计算的地表加速度响应与实测相当,可体现出土层放大作用。  相似文献   

9.
一维等效线性化土层地震反应分析程序的代表有LSSRLI 1与SHAKE2000。LSSRLI 1是我国地震安评工作中推荐使用的程序,代表20世纪80年代的国际先进水平,而目前代表国际先进水平是SHAKE2000。针对等效线性化程序存在的不足,有必要对LSSRLI 1进行改进。为了寻找LSSRLI 1与SHAKE2000之间的差异,通过建立Ⅰ至Ⅳ类场地的土层剖面模型,对比分析两程序的计算结果,得到在不同场地条件下两程序的差异情况以及这些差异的变化规律。结果表明,Ⅰ、Ⅱ类场地中两程序计算结果差异不大,Ⅲ、Ⅳ类场地中两程序计算的PGA、反应谱与剪应变结果差异较大。初步分析可知,剪应变相对差与PGA、反应谱、剪切模量相对差存在相关性,通过修正剪应变的计算可以缩小LSSRLI 1结果与SHAKE2000结果的差距。  相似文献   

10.
《地震研究》2021,44(4)
以某Ⅷ度设防区基岩场地地震危险性计算为基础,拟合不同随机相位的人造地震动时程作为输入,采用一维等效线性化方法,计算了Ⅱ类、Ⅲ类和Ⅳ类典型场地的土层地表地震反应。结果表明:(1)在不同地震动强度、不同随机相位基岩时程输入条件下,对不同类型场地土层地震反应计算得到的地表加速度峰值和反应谱值相对极差差别较大,地震动相位特征对土层地震反应的影响不可忽略;在反应谱特征周期2.0 s内,地表峰值和反应谱值变异系数随输入地震动强度的增大有增大趋势;(2)采用统计学方法计算给出了不同场地类别的基岩输入随机相位样本时程的必要数量,不同场地类别不同地震强度输入条件下所需要的最少样本量不同。在输入地震动强度不大(PGA0.20 g)且满足反应谱变异系数在均值加1倍标准差范围内时,不同类别场地至少需要15组不同随机相位的基岩时程,基本能满足均值统计要求;在输入地震动强度较大(PGA≥0.20 g),满足反应谱变异系数在均值加1倍标准差范围内时,至少需要30组不同随机相位的基岩时程,才能满足均值统计要求。  相似文献   

11.
一维等效线性化土层地震反应分析程序的代表有LSSRLI 1与SHAKE2000。LSSRLI 1是我国地震安评工作中推荐使用的程序,代表20世纪80年代的国际先进水平,而目前代表国际先进水平是SHAKE2000。针对等效线性化程序存在的不足,有必要对LSSRLI 1进行改进。为了寻找LSSRLI 1与SHAKE2000之间的差异,通过建立Ⅰ至Ⅳ类场地的土层剖面模型,对比分析两程序的计算结果,得到在不同场地条件下两程序的差异情况以及这些差异的变化规律。结果表明,Ⅰ、Ⅱ类场地中两程序计算结果差异不大,Ⅲ、Ⅳ类场地中两程序计算的PGA、反应谱与剪应变结果差异较大。初步分析可知,剪应变相对差与PGA、反应谱、剪切模量相对差存在相关性,通过修正剪应变的计算可以缩小LSSRLI 1结果与SHAKE2000结果的差距。  相似文献   

12.
软土场地地震反应分析是目前工程场地地震安全性评价中的重要组成部分,对场地设计地震动参数的确定具有重要意义。利用一维场地地震反应分析软件DEEPSOIL,可进行场地线性、等效线性化和时域非线性等多种分析,并可考虑孔隙水压的影响。笔者根据土层计算参数,编制了DEEPSOIL软件场地模型输入文件的自动生成程序,可高效、快速地完成对场地的建模。通过数值算例验证了DEEPSOIL软件的精度。同时通过对某典型Ⅲ类软土场地的地震反应分析,研究了拟合参数的敏感性以及等效线性化方法和时域非线性方法对峰值加速度和地表加速度反应谱的影响,并指出了等效线性化方法在分析软土场地地震反应中的不足。对于软土场地建议采用DEEPSOIL软件进行时域非线性分析,因为其参数简单并容易确定,适合建模快速和使用方便的要求。  相似文献   

13.
土层结构对反应谱特征周期的影响   总被引:20,自引:3,他引:17  
本文选取和构造了若干有工程意义的典型场地剖面,利用目前工程上广泛应用的场地地震反应分析的一维等效线性化波动方法,计算了在不同地震动输入下的不同场地剖面的地表加速度峰值和地表速度峰值。利用计算得到的地表加速度峰值和速度峰值计算了不同场地在不同地震动输入下的反应谱的特征周期。研究了不同土层结构对地表加速度反应谱特征周期的影响,获得了一些有意义的结果。  相似文献   

14.
以人工爆炸波为震源,通过现场测试获取基岩及土层的地震动参数,并采用等效线性化分析方法计算相应的地震动参数用于与实测结果进行对比分析。峰值加速度对比结果表明,等效线性化分析方法对于Ⅱ类场地的适应性较好,计算结果与实测结果非常接近,而Ⅲ类场地的计算结果与实测值之间存在较大的误差。加速度反应谱的对比结果表明,无论是计算结果还是实测记录,加速度反应谱的峰值均比基岩输入的要大,且土层反应计算的结果小于实际记录;加速度反应谱的宽度与场地类别关系密切,Ⅲ类场地明显比Ⅱ类场地要大,两类场地的计算结果也均小于实测值。  相似文献   

15.
地下水对地震动参数的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为分析地下水的存在对地震动参数的影响,以3个实际场地作为计算土层,2条真实的地震波记录作为输入地震动,分别计算不含地下水工况和饱含地下水工况的土层地震反应。其中,不含地下水工况使用单相介质模型,饱含地下水工况使用双相介质模型,算法均使用有限差分方法,人工边界使用透射边界。根据得到的加速度时程,提取它们的峰值加速度和反应谱数据,经过对比分析,得出以下结论:(1)含地下水场地的地表峰值加速度要明显小于不含地下水场地的地表峰值加速度;(2)含地下水场地的地表加速度反应谱要大于不含地下水场地的反应谱值;(3)由于地下水的存在,场地放大系数反应谱特征周期向长周期改变,反应谱平台值变大。  相似文献   

16.
基于谐波入射下的波动理论频域精确解,导出线性时域精确解,并在Matlab环境中编制相应的计算程序;选取8个简化的中硬场地剖面,用LSSRLI-1、精确解和SHAKE2000三种方法计算各场地在不同输入条件下的地震反应。结果表明:程序计算所得地表反应谱和土体剪应变分布与SHAKE2000结果一致;LSSRLI-1方法得到的地表反应谱与前二者结果一致;LSSRLI-1方法在某些情况下得到的土体剪应变分布与另外二者结果存在较大偏差,该偏差对地表反应谱有着不可忽略甚至非常显著的影响。  相似文献   

17.
讨论了土为具有弱非线性的硬场地下两种程序LSSRLI-1与SHAKE2000计算土层地震动的异同性。以2个Ⅰ类、4个Ⅱ类场地构造土层剖面,输入3种不同类型地震波,对比分析后的主要结果为:Ⅰ类场地两个程序计算出的PGA十分接近,Ⅱ类场地PGA的差别平均意义上也可以忽略,但某些情况下差异较大;Ⅰ类场地两个程序计算出的反应谱差别很小,Ⅱ类场地反应谱存在差异,但变化范围不大;Ⅰ类场地中剪应变结果差异很小,而在Ⅱ类场地中差异变化范围很大;PGA相对差和反应谱相对差与剪应变相对差之间存在相关性;PGA、反应谱的差异很可能来源于两程序剪应变计算方法的不同。  相似文献   

18.
选择粘土、粉土、砂土、砾石4类土场地构造了140个单一均质土剖面,输入峰值分别为50、100、150、200、300 Gal的各3条人工合成地震动时程,使用一维等效线性波动法,进行了土层地表地震反应计算,并对计算得到的地表峰值加速度和反应谱平台值做了统计分析和讨论.结果表明:不同土类地表峰值加速度和反应谱平台值随覆盖层增大达到最大值的厚度不同;不同幅值的基底输入,不同土类的覆盖层情况下,地表峰值加速度相对于基岩值加速度的放大倍数并不具有规律性,同是Ⅱ类场地,中软和中硬场地土条件下放大倍数的差异也是明显的.  相似文献   

19.
地震动输入界面的选取对深软场地地震效应的影响   总被引:4,自引:0,他引:4  
以天津和上海两个典型的深厚软弱场地为研究背景,探讨了地震动输入界面对场地地表地震动参数的影响。对于场地1(天津)和场地2(上海),分别选择7个和8个剪切波速(υs)大小不同的土层位置作为地震动输入界面,并选用Taft、Northridge地震加速度记录和南京人工波作为输入地震动,将Taft波、Northridge波和南京人工波的加速度峰值水平调整为0.35m/s^2、0.70m/s^2和0.98m/s^2,用SHAKE91程序对这两个场地进行了不同的地震动输入界面、输入地震波和峰值加速度水平的128种组合的场地地震反应分析。与从假想基岩面(υs≥500m/s)输入地震动的结果(假想的实际值)相比,可得到如下结论:(1)随着地震动输入界面深度(剪切波速)的增加,场地地表加速度反应谱逐渐地向实际值接近;(2)地震动输入界面的深度相同时,地震动加速度峰值水平越高,两者的加速度反应谱谱值的相对差异也越大;(3)对于一般建筑物,可以把剪切波速为400m/s左右的土层作为地震动输入界面;对于中长周期的建筑物,则应慎重选择地震动输入界面,最好选取υs≥500m/s^2的土层或基岩面作为地震动输入界面。  相似文献   

20.
地震动强度及频谱特征对场地地震反应分析结果的影响.   总被引:4,自引:3,他引:1  
通过收集整理235个实际钻孔资料并建立了2820个计算工况,运用一维波动等效线性化地震反应分析方法,基于不同类别场地条件,研究在不同强度、频谱特性的地震动输入形式下,场地条件对地表地震动参数影响,重点考察地表峰值加速度的变化特征及规律,并对计算结果进行了统计回归分析,给出了不同场地类别条件下地表峰值放大倍数的一般经验值.由于我国现行抗震设计规范中,没有考虑地震烈度或地震动强度对设计反应谱的影响,也没有考虑地震动频谱特性对地表峰值的影响,因此,本文的研究成果可为未来修订抗震设计规范提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号