首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
A voluminous (>600 km3) and long-lived (~520–75 ka) phase of rhyolitic eruptions followed collapse of the Yellowstone caldera 640 ka. Whether these eruptions represent a dying cycle, or the growth of a new magma chamber, remains an important question. We use new U–Th zircon ages and δ18O values determined by ion microprobe, and sanidine Pb isotope ratios determined by laser ablation, to investigate the genesis of voluminous post-caldera rhyolites. The oldest post-caldera rhyolites, erupted between ~520 and 470 ka, exhibit extreme age and oxygen isotopic heterogeneity, requiring derivation from individual parcels of low-δ18O melts. We find a progressive increase in zircon homogeneity for rhyolite eruptions from ~260 to 75 ka, with homogeneous low-δ18O zircon values of 2.7–2.8‰ that are in equilibrium with low-δ18O host melts for the majority of the youngest eruptions. New sanidine Pb isotope data define separate arrays for post-caldera rhyolites and the caldera-forming tuffs that preceded them, indicating that they were not sourced from a mushy Lava Creek Tuff batholith that remained after caldera collapse. Rather, our new age and isotopic data indicate that the post-caldera rhyolites were generated by remelting of a variety of intracaldera source rocks, consisting of pre-Lava Creek Tuff volcanic and plutonic rocks and earlier erupted post-Lava Creek Tuff rhyolites. Batch assembly of low-δ18O melts starting at ~260 ka resulted in progressive homogenization, followed by differentiation and cooling up until the last rhyolite eruption ~75 ka, a trend that we interpret to be characteristic of a dying magma reservoir beneath the Yellowstone caldera.  相似文献   

2.
We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.  相似文献   

3.
《International Geology Review》2012,54(16):1967-1982
ABSTRACT

The Taupo Volcanic Zone (TVZ), New Zealand, is a well-documented volcanic arc characterized by explosive rhyolitic magmas within a series of caldera complexes that include the Okataina Volcanic Centre (OVC). New quartz melt inclusion and volcanic glass data from the 45 ka caldera-forming Rotoiti eruption within the OVC are compared to published studies. The new data are characterized by low K2O (~1.5–3.5 wt.%), Rb (~30–70 ppm), Sr (~40–90 ppm), U (~0.5–2.5 ppm), and Ba (~300–1000 ppm) ranges that differ significantly from other OVC systems (~3.0–4.5 wt.% K2O, ~80–150 ppm Rb, and ~2.5–5.0 ppm U). Most interestingly, the Rotoiti melt inclusion data measured in this study show a decrease in Rb, Sr, and U, although the fractionation trends originate from the same source point as published OVC data. This progressive decreasing trend is interpreted as an interaction with a less enriched rhyolitic melt (represented by the low Rb, Sr, and U of glasses) during fractionation processes from a common TVZ source. The established model for TVZ rhyolites is that they are extracted from a middle or upper crustal source (‘mush’ zone) prior to eruption. Adding to this model, new melt inclusion data suggest that all TVZ rhyolites are fractionated from this common TVZ source and, prior to eruption, the Rotoiti system was rejuvenated by this source (evidenced by the low REE glasses). Exactly what triggers the common TVZ source to fractionate remains unclear, but a proposed mechanism to account for this involves the successive melting of the upper crust by upwelling mantle induced by incremental subduction.  相似文献   

4.
We present new high-precision CA-ID-TIMS and in situ U–Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15?10 Ma Bruneau–Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10?6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and εHf (ranges of up to 24 ε units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104–106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and εHf) and a combination of Precambrian basement rock (normal δ18O and εHf down to ??60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.  相似文献   

5.
Understanding the processes of differentiation of the Yellowstone–Snake River Plain (YSRP) rhyolites is typically impeded by the apparent lack of erupted intermediate compositions as well as the complex nature of their shallow interaction with the surrounding crust responsible for their typically low O isotopic ratios. A pair of normal-δ18O rhyolitic eruptions from the Heise eruptive centre in eastern Idaho, the Wolverine Creek Tuff and the Conant Creek Tuff, represent unique magmatic products of the Yellowstone hotspot preserving abundant vestiges of the intermediate differentiation steps leading to rhyolite generation. We address both shallow and deep processes of magma generation and storage in the two units by combining high-precision ID–TIMS U–Pb zircon geochronology, trace element, O and Hf isotopic studies of zircon, and Sr isotopic analyses of individual high-Mg# pyroxenes inherited from lower- to mid-crustal differentiation stages. The zircon geochronology confirms the derivation of both tuffs from the same rhyolitic magma reservoir erupted at 5.5941 ± 0.0097 Ma, preceded by at least 92 ± 14 ky of continuous or intermittent zircon saturation approximating the length of pre-eruptive magma accumulation in the upper crust. Some low-Mg# pyroxenes enclosing zircons predate the eruption by at least 45 ± 27 ky, illustrating the co-crystallisation of major and accessory phases in the near-liquidus rhyolitic melts of the YSRP over a significant period of time. Coeval zircon crystals are isotopically heterogeneous (two populations at εHf ~?5 and ?13), requiring the assembly of isotopically distinct melt pockets directly prior to, or during, the eruption. The primitive Mg# 60–90 pyroxenes are out of isotopic equilibrium with the host rhyolitic melt (87Sr/86Sri = 0.70889), covering a range of 87Sr/86Sri = 0.70705–0.70883 corresponding to ratios typical of the most radiogenic YSRP basalts to the least radiogenic YSRP rhyolites. Together with the low εHf in zircon, the Sr isotopic ratios illustrate limited assimilation dominated by radiogenic Archean crustal source materials incorporated into variably evolved YSRP melts as they progress towards rhyolitic compositions by assimilation–fractional crystallisation.  相似文献   

6.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   

7.
Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H2O, they provide a quantitative and reliable tool for precisely determining pre-eruptive H2O content using major-element data from pumices or lava flows. Coupled enrichment in Na, Fe, and Ti relative to the calc-alkaline trend is a general feature of fractional crystallization in the presence of modest amounts of H2O, which may be used to look for “damp” fractionation sequences elsewhere.  相似文献   

8.
Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of '18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger (~1‰) variability of '18O(quartz). The youngest domes of Glass Mountain are similar to BT in '18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The '18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant '18O(melt)=7.8ǂ.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of '18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of '18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal '18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale '18O homogeneity of BT and other large magma chambers as evidence of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable '18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.  相似文献   

9.
Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38–21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50–1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.  相似文献   

10.
This study presents a new experimental approach for determining H2O solubility in basaltic melt at upper mantle conditions. Traditional solubility experiments are limited to pressures of ~600 MPa or less because it is difficult to reliably quench silicate melts containing greater than ~10 wt% dissolved H2O. To overcome this limitation, our approach relies on the use of secondary ion mass spectrometry to measure the concentration of H dissolved in olivine and on using the measured H in olivine as a proxy for the concentration of H2O in the co-existing basaltic melt. The solubility of H2O in the melt is determined by performing a series of experiments at a single pressure and temperature with increasing amounts of liquid H2O added to each charge. The point at which the concentration of H in the olivine first becomes independent of the amount of initial H2O content of the charge (added + adsorbed H2O) indicates its solubility in the melt. Experiments were conducted by packing basalt powder into a capsule fabricated from San Carlos olivine, which was then pressure-sealed inside a Ni outer capsule. Our experimental results indicate that at 1000 MPa and 1200 °C, the solubility of H2O in basaltic melt is 20.6 ± 0.9 wt% (2 × standard deviation). This concentration is considerably higher than predicted by most solubility models but defines a linear relationship between H2O fugacity and the square of molar H2O solubility when combined with solubility data from lower pressure experiments. Further, our solubility determination agrees with melting point depression determined experimentally by Grove et al. (2006) for the H2O-saturated peridotite solidus at 1000 MPa. Melting point depression calculations were used to estimate H2O solubility in basalt along the experimentally determined H2O-saturated peridotite solidus. The results suggest that a linear relationship between H2O fugacity and the square of molar solubility exists up to ~1300 MPa, where there is an inflection point and solubility begins to increase less strongly with increasing H2O fugacity.  相似文献   

11.
The 3.7 ka year-old Averno 2 eruption is one of the rare eruptions to have occurred in the northwest sector of the Phlegraean Fields caldera (PFc) over the past 5 ka. We focus here on the fallout deposits of the pyroclastic succession emplaced during this eruption. We present major and trace element data on the bulk pumices, along with major and volatile element data on clinopyroxene-hosted melt inclusions, in order to assess the conditions of storage, ascent, and eruption of the feeding trachytic magma. Crystal fractionation accounts for the evolution from trachyte to alkali-trachyte magmas; these were intimately mingled (at the micrometer scale) during the climactic phase of the eruption. The Averno 2 alkali trachyte represents one of the most evolved magmas erupted within the Phlegraean Fields area and belongs to the series of differentiated trachytic magmas erupted at different locations 5 ka ago. Melt inclusions record significant variations in H2O (from 0.4 to 5 wt%), S (from 0.01 to 0.06 wt%), Cl (from 0.75 up to 1 wt%), and F (from 0.20 to >0.50 wt%) during both magma crystallization and degassing. Unlike the eruptions occurring in the central part of the PFc, deep-derived input(s) of gas and/or magma are not required to explain the composition of melt inclusions and the mineralogy of Averno 2 pumices. Compositional data on bulk pumices, glassy matrices, and melt inclusions suggest that the Averno 2 eruption mainly resulted from successive extrusions of independent magma batches probably emplaced at depths of 2–4 km along regional fractures bordering the Neapolitan Yellow Tuff caldera.  相似文献   

12.
The Mount Princeton magmatic center, located in central Colorado, consists of the epizonal Mount Princeton batholith, the nested Mount Aetna caldera, and volumetrically minor leucogranites. New CA-TIMS U/Pb zircon ages indicate the majority of the Mount Princeton batholith was emplaced during a period of regional ignimbrite quiescence. The structurally highest unit of quartz monzonite yields a 206Pb/238U age of 35.80 ± 0.10 Ma, and the youngest dated unit of the quartz monzonite is a porphyritic unit that yields a 206Pb/238U age of 35.37 ± 0.10 Ma. Using the exposed, dated volume of the quartz monzonite and new geochronology yields an estimated pluton filling rate of ~0.002 km3/a. This rate is comparable to the accumulation rates published for other plutons, and at least an order of magnitude slower than fluxes necessary to support accumulation of large eruptible magma volumes. Geochronology for the two large ignimbrites spatially associated with the batholith indicates a temporal disconnect between the vast majority of pluton building and explosive eruption of magma. The Wall Mountain Tuff erupted from a source in the same geographic area as the Mount Princeton batholith at 37.3 Ma (Ar/Ar sanidine), but no structural evidence of a caldera or temporally associated plutonic rocks is known. The Badger Creek Tuff erupted at 34.3 Ma (Ar/Ar sanidine) during the formation of the Mount Aetna caldera in the southern portion of the batholith. Our 206Pb/238U age for the Badger Creek Tuff is 34.47 ± 0.05. The only analyzed plutonic rocks of similar age to the Badger Creek Tuff are an extra-caldera dike with a 206Pb/238U age of 34.57 ± 0.08 Ma, a ring dike with a 206Pb/238U age of 34.48 ± 0.09 Ma, and a portion of the Mount Aetna pluton with a 206Pb/238U age of 34.60 ± 0.13 Ma. The small volume intrusions related to the eruption of the Badger Creek Tuff are chemically similar to the ignimbrite and show no signature of crystal–liquid separation in the shallow crust.  相似文献   

13.
After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.  相似文献   

14.
An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom’s Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134–0.7185) than groundmass and whole-rock ratios (0.7099–0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.  相似文献   

15.
The Central Plateau Member rhyolites have been erupted between 173 and 70 ka and are the youngest Yellowstone intracaldera rhyolites. They mostly comprise very voluminous lava flows totaling ~600 km3 in volume. Their eruptive vents define two NNW-trending lineaments which are aligned with regional faults. We present new whole rock, glass, and mineral analyses and propose a petrogenetic and volcano-tectonic model for these rhyolites. At a caldera-wide scale, there is a temporal enrichment in elements such as Nb, Y and HREE, and a depletion in Sr, Ba, and Ce/Yb. Simultaneously, clinopyroxene becomes less magnesian while Ti contents in quartz decrease. By contrast, quartz in all rhyolites is rounded and bears long glass re-entrants, suggesting heating. Based on these data and observations, we propose that the Central Plateau Member rhyolites have been generated as follows. A hydrothermally altered low-δ18O rhyolitic protolith beneath the Mallard Lake Resurgent Dome in the southwestern part of the caldera started to melt at ~250 ka. Repeated heating pulses caused the melting front to expand radially, and a large crystal mush formed beneath much of the caldera. The mush was able to differentiate but not erupt due to its high crystallinity and viscosity. Further inputs of heat and silicic magma in this mush increased the degree of melting, forming crystal-poor magma batches which erupted a few hundred to a few thousand years later through regional faults to form the Central Plateau Member rhyolites.  相似文献   

16.
Melt and fluid inclusions were investigated in minerals from igneous rocks and ore (Au-Ag-Pb-Zn) veins of the Stiavnica ore field in Central Slovakia. High H2O (7.1–12.0 wt %) and Cl (0.32–0.46 wt %) contents were found in silicate melt inclusions (65–69 wt % SiO2 and 5.2–5.6 wt % K2O) in plagioclase phenocrysts (An 68–36) from biotite-homblende andesites of the eastern part of the caldera. Similar high water contents are characteristic of magmatic melts (71–76 wt % SiO2 and 3.7–5.1 wt % K2O) forming the sanidine rhyolites of the Vyhne extrusive dome in the northwestern part of the Stiavnica caldera (up to 7.1 wt %) and the rhyolites of the Klotilda dike in the eastern part of the ore field (up to 11.5 wt %). The examination of primary inclusions in quartz and sanidine from the Vyhne rhyolites revealed high concentrations of N2 and CO2 in magmatic fluid (8.6 g/kg H2O and 59 g/kg H2O, respectively). Fluid pressure was estimated as 5.0 kbar on the basis of primary CO2 fluid inclusions in plagioclase phenocrysts from the Kalvari basanites. This value corresponds to a depth of 18 km and may be indicative of a deep CO2 source. Quartz from the granodiorites of the central part of the Stiavnica-Hodrusa complex crystallized from a melt with 4.2–6.1 wt % H2O and 0.24–0.80 wt % Cl. Magmatic fluid cogenetic with this silicate melt was represented by a chloride brine with a salinity of no less than 77–80 wt % NaCl equiv. Secondary inclusions in quartz of the igneous rocks recorded a continuous trend of temperature, pressure, and solution salinity, from the parameters of magmatic fluids to the conditions of formation of ore veins. The gold mineralization of the Svyatozar vein system was formed from boiling low-salinity fluids (0.3–8.0 wt % NaCl equv.) at temperatures of 365–160°C and pressures of 160–60 bar. The Terezia, Bieber, Viliam, Spitaler, and Rozalia epithermal gold-silver-base metal veins were also formed from heterogeneous low-salinity fluids (0.3–12.1 wt %) at temperatures of 380–58°C and pressures of 240–10 bar. It was found that the salt components of the solutions were dominated by chlorides (high content of fluorine, up to 0.45 mol/kg H2O, was also detected), and sulfate solutions appeared in the upper levels. The dissolved gas of ore-forming solutions was dominated by CO2 (0.1–8.4 mol %, averaging 1.3 wt %) and contained minor nitrogen (0.00–0.85 mol %, averaging 0.05 mol %) and negligible methane admixtures (0.00–0.05 mol %, averaging 0.004 mol %). These data allowed us to conclude that the magmatic melts could be sources of H2O, Cl, CO2, and N2. The formation of the epithermal mineralization of the Stiavnica ore field was associated with the mixing of magmatic fluid with low-concentration meteoric waters, and the fluid was in a heterogeneous state.  相似文献   

17.
The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.  相似文献   

18.
Clinopyroxene phenocrysts from the mafic calc-alkaline lavas of Salina (Aeolian arc, southern Tyrrhenian Sea, Italy) have been analysed to determine the hydrogen content and iron oxidation state of this early crystallized phase. The volcanic activity of Salina, starting at 168 ka and developed in several centres up to 24 ka, was dominated by calc-alkaline and high-K calc-alkaline basalts and andesites, with minor dacites and rhyolites. The presence of OH vibrational bands was detected in the IR spectra of clinopyroxenes phenocrysts from Corvo, Rivi-Capo (168–87 ka), Fossa delle Felci (108–59 ka) and Monte dei Porri (57 ka) eruptions. Corvo-Rivi-Capo basalts have clinopyroxenes with the lowest water contents 75–97 ppm H2O by weight, whereas an increase in the hydrogen contents of clinopyroxenes from Fossa delle Felci centre, with 171–286 ppm H2O by weight, and Monte dei Porri with 343–390 ppm H2O by weight, was observed. Mössbauer spectroscopy showed only a limited variation on the Fe3+/Fetot ratio of the studied samples, and a very similar atomic Fe3+ content (0.042–0.047 a.p.f.u.) suggesting that only minor variation on fO2 occurred during the crystallization of these clinopyroxenes. The water content of parental melts, calculated by applying an IVAl-dependent partition coefficient to the measured hydrogen contents of clinopyroxenes, is 0.4–0.8 wt% of water in melt for the Rivi-Capo-Corvo basalts, 0.5–3.7 wt% water in melt for Fossa delle Felci lavas and 1.6–2.6 wt% of water in melt for Monte dei Porri lavas. An increase in the maximum hydrogen contents of clinopyroxenes can be recognized during the evolution of the Salina volcano, with the highest hydrogen content measured in clinopyroxenes from Monte dei Porri where the eruptions were characterized by a high degree of explosivity, suggesting a key role of volatiles.  相似文献   

19.
Magmas erupted at the Kane Springs Wash volcanic center record the buildup and decay of a silicic magma chamber within the upper crust between 14.1 and 13.2 Ma ago. Intrusion of a variety of mantle-derived basaltic magmas into the crust sustained the system thermally, but only alkali basalts appear to be parental. Fractionation of alkali basalt, together with 10–20% contamination by partial melts of the lower crust, generated trachyandesite magmas. Mafic trachytes, with magma temperatures of 1,000° C, were initially generated from trachyandesites at depths greater than 15 km. Continued fractionation combined with assimilation of upper crustal melts at a depth of 5–10 km produced more evolved trachytes and high-silica rhyolites. These silicic magmas erupted as the Kane Wash Tuff 14.1 Ma ago from a chamber zoned from fayalite-bearing alkali rhyolite near 820° C at the roof to a trachytic dominant volume. Initial ash flows of the Kane Wash Tuff, Member V1, are metaluminous, whereas later cooling units, Members V2 and V3, are mildly peralkaline and have higher Fe, Zr, and Hf and lower Ca, Th/Ta, Rb/ Zr, and LREE/HREE. Less than 1 % upper crustal component was involved in generation of Members V2 and V3 from trachytic magma. Eruption of 130 km3 of magma resulted in collapse of the Kane Springs Wash caldera. Trachytic magma from deeper levels of the system was extruded onto the caldera floor shortly afterward, forming a central trachyte/syenite complex. Replacement of this magma by hotter, more mafic magma may have induced additional melting of the already heated chamber walls, as high-silica rhyolites that erupted in the moat surrounding the central complex have a large crustal component. Early moat rhyolites had temperatures near 800° C and, in contrast to the Kane Wash Tuff, are ferroedenite-bearing, have higher Al, K/Na, Th/Ta, and Ba, and have lower Fe, REE, and Zr. Fractional crystallization of this magma within the cooling and crystallizing magma chamber formed biotite-bearing rhyolite in isolated pockets. The most evolved of these had temperatures near 700° C, elevated F contents, H2O contents of 5 wt.%, Rb> 500 ppm, chondrite-normalized LREE/HREE <1, and formed vapor-phase topaz. Declining temperatures and Cl/ F from the Kane Wash Tuff through the moat rhyolites may reflect decreasing basalt input into the base of the system and increasing proportions of upper crustal melts in the silicic magmas.  相似文献   

20.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号