首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
加利福尼亚州的熊溪水电站有一段直径48英寸长约1900英尺的管道已严重破坏,管道是常用的48英寸低压管道,螺旋肋,厚度为16的镀锌管,且该工程有4个急剧的弯曲(一个60度,两个45度,一个30度的弯曲),Michels管道公司采用现场修复更新技术(CIPP)对其修复。  相似文献   

3.
4.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

5.
The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead–silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/39Ar dates suggest a minimum age of 61.5 ± 0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0 ± 0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1–2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4–35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375°C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469 ± 25°C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2‰ to 13.4‰ and −60‰ to −39‰, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe.  相似文献   

6.
The syn-tectonic breccia-hosted Mount Isa Cu deposit in northwest Queensland is the largest sediment-hosted Cu deposit in Australia. Whole-rock samples of chalcopyrite-rich Cu ore form an isochron with a Re–Os age of 1,372 ± 41 Ma. This age is more than 100 Ma younger than the previously accepted age of Cu ore formation, an Ar–Ar mineral age for biotite separated from the host rocks within the alteration envelope to the Cu orebody. This discrepancy cannot be unequivocally resolved due to a lack of other absolute geochronological constraints for Cu mineralisation or the deformation event associated with Cu emplacement. The 1,372 ± 41 Ma date may reflect (a) the time of Cu deposition, (b) the time of a hydrothermal event that reset the Re–Os signature of the Cu ore or (c) mixing of the Re–Os isotope systematics between the host rocks and Cu-bearing fluids. However, a range of published Ar–Ar and Rb–Sr dates for potassic alteration associated with Cu mineralisation also records an event between 1,350 and 1,400 Ma and these are consistent with the 1,372 Ma Re–Os age. The 1.8 Ga Eastern Creek Volcanics are a series of tholeiitic basalts with a primary magmatic Cu enrichment which occur adjacent to the Mount Isa Cu deposit. The whole-rock Os isotopic signature of the Eastern Creek Volcanics ranges from mantle-like values for the upper Pickwick Member, to more radiogenic/crustal values for the lower Cromwell Member. The Re–Os isotope signature of the Cu ores overlaps with those calculated for the two volcanic members at 1,372 Ma; hence, the Os isotope data are supportive of the concept that the Os in the Cu ores was sourced from the Eastern Creek Volcanics. By inference, it is therefore postulated that the Eastern Creek Volcanics are the source of Cu in the Mount Isa deposit, as both Os and Cu are readily transported by oxidised hydrothermal fluids, such as those that are thought to have formed the Cu orebody. The Pickwick Member yields a Re–Os isochron age of 1,833 ± 51 Ma, which is within error of previously reported age constraints. The initial 187Os/188Os isotopic ratio of 0.114 ± 0.067 (γOs = −0.7) is slightly subchondritic, and together with other trace element geochemical constraints, is consistent with a subcontinental lithospheric mantle source. The Pickwick Member records a minimum age of ca. 1.95 Ga for melt depletion in the subcontinental lithospheric mantle beneath the Mount Isa Inlier prior to the extraction of the magmas which formed the Eastern Creek Volcanics. This corresponds with the end of subduction-related magmatism along the eastern margin of the Northern Australian Craton, which included the Mount Isa Inlier.  相似文献   

7.

40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma).  相似文献   

8.
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.  相似文献   

9.
The Woolshed Creek fossil site near the Royal Military College, Duntroon, Canberra, contains brachiopods Atrypa duntroonensis (early Homerian, early Silurian, ca 430.5?Ma) within a mudstone of the Canberra Formation. Their discovery in 1844 by the Reverend William B. Clarke (“the Father of Australian Geology”), and subsequent comparison with other fossil collections from around the world, contributed significantly to the nineteenth century debate about the oldest rocks in Australia. The fossil site is now on the ACT Government Heritage List and recent site improvements make it readily accessible via a pathway from the sports grounds of the Royal Military College.  相似文献   

10.
Isotope analyses (K–Ar, δ18O and δD) were performed on illite from both the sandstone cover and the underlying basement, close to and distant from Shea Creek, an unconformity-type U deposit (Athabasca Basin, Canada); the illite had previously been characterized crystallographically. In the barren areas away from deposit, illite is mainly of the cis-vacant 1M polytype occurring as relatively coarse-grained lath-shaped particles, while it occurs as fine-grained particles of the trans-vacant 1M type next to and in the U mineralized strata. The tectonic-induced hydrothermal system that favored illite crystallization was multi-episodic 1453 ± 2, 1330 ± 20 and probably about 1235 Ma ago. These illite-forming episodes appear to have occurred contemporaneously to those favoring the concentration of the associated U oxides, which were dated independently by the U–Pb method in the Shea Creek deposits and elsewhere in the Athabasca Basin.  相似文献   

11.
Although it represents but one geographic data point, the uppermost Maastrichtian Hell Creek Formation (HCF), exposed in the upper Great Plains of the North American craton, remains the most studied source for understanding the final ∼1.5 Myr of the Mesozoic Era in the terrestrial realm. Because it lies conformably below the earliest Paleocene Fort Union Formation, and together these two units preserve a rich fauna and flora, much of what is understood about the terrestrial Cretaceous–Paleogene (K–Pg) boundary comes from this sequence.The HCF has been reconstructed as an expansive, fluvially drained, low coastal plain, built out, to the west, against the Laramide Orogen, and to the east, against the ultimate transgression (Cannonball) of the Western Interior Sea. Its meandering rivers and moist soils supported a multi-tiered angiosperm-dominated flora and rich insect and vertebrate faunas, including dinosaurs, crocodilians, squamates, turtles, and mammals. A dramatic facies change representing the initiation of catastrophic flooding is preserved, within available levels precision, at the K–Pg boundary.High-precision stratigraphy has proven difficult in this lenticular fluvial system. Where present, the boundary can be recognized by the bipartite boundary claystone; otherwise, palynostratigraphy has proven a powerful tool. Numerical dates have been successfully obtained from in tonsteins at the boundary and above, in the Fort Union; however, these have proven elusive below the boundary within the HCF. The K–Pg boundary in this region is dated at 66.043 Ma (Renne et al., 2013). Magnetostratigraphic studies have been carried out in the HCF; although all but one have lacked numerical dates, these have been used for correlations of widespread, disjunct exposures and for the estimation of sedimentation rates.The palynoflora is largely homogenous through the HCF; at the K–Pg boundary, it shows an abrupt ∼30% extinction. This makes it a powerful tool for identification of the K–Pg boundary, although because the boundary is identified on absence of Cretaceous taxa rather than presence of earliest Paleocene taxa, several competing methods have been applied to identifying the K–Pg boundary using pollen.The macroflora, consisting largely of leaves, consists of three successive floras, showing increasing diversity through the HCF. The ultimate of these three floras undergoes an abrupt 57% extinction; taken as a whole, however, the macroflora undergoes a 78% extinction at the K–Pg boundary.The best data available for dinosaurs – including archaic Aves – show an abrupt extinction. By contrast, salamanders and other lissamphibians, as well as chelonians, cross the boundary virtually without perturbation. Squamates appear to have suffered significant extinctions at the K–Pg boundary, as did euselachians (elasmobranchs) and insects. Mammals suffered a 75% extinction; however, some of this figure cannot be shown to have occurred in less than the last 500 kyr of the Cretaceous, and thus has been potentially attributable to causes other than a bolide impact. Taken together, the survivorship patterns are concordant with the catastrophic inception of ubiquitous flooding characterizing the K–Pg boundary.While the key K–Pg boundary question in the HCF was once the rate of the biotic extinction, it has moved to the distinction between single-cause scenarios, with the Chicxulub bolide as agent of extinction, and multi-cause scenarios, uniting habitat partitioning, Deccan flood-basalt volcanism, climate change, competition, and bolide impact. Not every potential environmental perturbation need be a mechanism for the extinction: parsimony and the data continue to be concordant with a bolide impact as the single agent of the terrestrial K–Pg mass extinction.  相似文献   

12.
13.
西澳州Catlle Creek地区位于金伯利地块西缘霍尔斯克里克(Halls Creek)活动带上,附近发育有深大断裂。研究区内发现多处基性-超基性小岩体及岩脉且存在两处矿化点(带),存在两处1∶5万土壤地球化学甲类综合异常区,二者均主要由Cu、Ni、Au、Mo、Co等元素组成,多个浓集中心,异常套合较好,Cu、Ni的极大值均超过或接近边界品位,甚至工业品位,二者与矿化等信息套合良好。岩体中岩石样品主量元素特征显示其具有辉长岩-苏长岩的成矿专属性特征;在AFM图解上,岩石样品显示原始岩浆为高MgO拉斑玄武岩系列。微量元素原始地幔标准化蛛网图表明岩体岩浆演化过程中发生过明显的陆壳物质同化混染作用。稀土元素配分图反映出成岩过程中有相似的分异演化过程,并表明岩浆在演化过程中存在明显橄榄石分离结晶作用。研究区与萨凡纳矿床具有很高的可对比性,同时符合古大陆内小岩体成矿系统理论。表明研究区具较高的成矿潜力。  相似文献   

14.
15.
16.
Abstract

The geochemistry of Early Proterozoic sedimentary rocks from the low‐grade metamorphic terrain W of the South Alligator Hinge Zone in the Pine Creek Geosyncline is reported and discussed in terms of the stratigraphy and differences in rock type. Major element trends are dominated by lithological and mineralogical variations; in particular, the dolomitic nature of pelites in the Mount Partridge and Namoona Groups, the presence of chlorite in Crater Formation pelites, and the volcanic affinity of pelites within the Gerowie Tuff. Concentration of Th, U, Zr, Y, Nb, Ce and La in the clastic sediments of the Finniss River and South Alligator Groups is probably related to the presence of felsic volcanics in these groups; high levels of Sn in these groups may be similarly related, and highlight the apparent volcanogenic source for this metal. The South Alligator Group is a preferred host for base‐metal mineralization, and the regional abundance of several metals in this group enhance its economic potential and support a syngenetic, possibly exhalative, origin for these deposits. Anomalous Co, Ni, and V values in Masson Formation pelites are probably related to the nearby mafic Stag Creek Volcanics. Detrital minerals derived from reworked Archaean basement account for high Zr and Th in the Crater Formation. The geochemical data support the shift in REE patterns related to changes in crustal composition about the Archaean‐Proterozoic boundary, though patterns within the Early Proterozoic have also been influenced by felsic volcanism in the South Alligator Group. The chemical index of alteration (which reflects the degree of weathering of sedimentary rocks) reflects the existence of a major unconformity between the Mount Partridge and Namoona Groups; however, other hiatuses observed in or inferred from the rock record are not evident. The dominant felsic volcanic component of the Gerowie Tuff pelites is also indicated by this technique.  相似文献   

17.
The Mössbauer milliprobe allows the determination of Fe3+/ΣFe in samples as small as 50?μm. For the first time this technique is applied to a suite of diamonds of eclogitic paragenesis, where three garnet and five clinopyroxene inclusions in diamonds from George Creek, Colorado have been analysed. For garnet Fe3+/ΣFe ranges from 0–7%, while values for clinopyroxene range from 8–14%. These results are consistent with the low oxygen fugacity conditions implied by the presence of the inclusions in diamond.  相似文献   

18.
19.
Discharge of wastewater from the retaining pond of a Pb ore-flotation plant since 1967 and breaching of the retaining pond in April 1998 contaminated 17540 cbm of river bank sediment with 833 ton Pb, nearly 19 km along the Khli Ti Creek. High blood Pb concentration was detected in many inhabitants. Prohibition of water and aquatic biota consumption has caused difficulties for rural people to make their ends meet. The governmental agency closed the ore-floatation plant and built 2 rock check dams downstream. The dam was designed to slow down water velocity and precipitate particulate matter. Contaminated sediments that have been trapped in front of the dam were planned to be dredged and disposed in landfill. Until now, no dredging is performed because some experts claim that dredging will resuspend the contaminated sediment into the water column, and fresh sediment deposited during periods of high flow will cover the contaminated sediment. The aim of this study was to evaluate the ability of the rock check dam to prevent the transportation of Pb-contaminated sediment in the Khli Ti Creek. Sediment located before and after the rock check dam and 2 km downstream were collected in September 2003 and May 2005. During September 2003, Pb concentrations in sediment deposited before and after the rock check dam and 2 km downstream were 48840, 53741 and 36020 mg/kg, respectively. These results showed that Pb-contaminated sediment was transported over the first rock check dam but still remained after the rock check dam. Result of May 2005 sampling also showed the same trend, although with different ranges due to seasonal variation, types of collected sediment, sample preparation and analytical techniques. Pb concentrations in sediment were 209684, 306775 and 33760 mg/kg, respectively.  相似文献   

20.
Variations in the abundances of Zn, Cu, and Pb are found to be useful in identifying tectonic regimes and separating oceanisland basalts into enriched- and depleted-source categories. The average Zn, Cu, and Pb contents of normal mid-ocean ridge basalts (N-MORB) are 84, 70, and 0.35 ppm, respectively. Differences in average Zn contents for various ridges reflect more the varying degrees of differentiation than variations of Zn content in the source rocks. At a Mg# of 70, or Mg#70, which is taken to represent primitive MORB, many MORB sequences converge at a Zn content of 58 ± 6 ppm, which is close to the value for primitive mantle (50 ppm) and ordinary chondrites (~55 ppm). Values of 0.1 to 0.15 ppm Pb in MORB at Mg#70, best defined at the superfast-spreading Southern East Pacific Rise, are similar to estimates of Pb in the primitive mantle (0.12 to 0.18 ppm). They also are near the lower end of the range for ordinary chondrites. The very slow spreading Southwest Indian Ocean Ridge has a sequence with higher Pb contents, in addition to a more normal sequence, which has a visual best value of 0.4 ppm Pb at Mg#70. With the exception of the Walvis Ridge, Zn and Cu appear to be little affected by proximity to hotspots (i.e., E-MORB); however, Pb contents are higher and average about 0.6 ppm.

Both Zn and Pb in MORB are incompatible elements (i.e., favor the melt), but Cu is a compatible element. At Mg#70, there is the suggestion of a value of 100 ppm for Cu, with lower values possibly representing partial removal of sulfides and their associated Cu from the source. Nonetheless, Cu contents of primitive MORB tend to be much higher than even high estimates for the primitive mantle (28 ppm), and are closer to ordinary chondrites (~90 ppm). Therefore, Zn, Cu, and Pb all approximate chondritic values in the primitive MORB melt.

Average contents of Zn, Cu, and Pb in oceanic island basalts (OIB) are 115, 62, and 3.2 ppm, respectively. At Mg#70, values of Zn and Cu are similar to the respective averages for OIB, with Zn higher and Cu lower than MORB. At a Mg# of ~40, however, OIB and MORB tend to have similar Zn contents. With further differentiation, OIB trachytes can contain >200 ppm Zn. Unlike MORB, OIB can differentiate to high Cu contents of 200 ppm at Mg#s of 40 to 60. In contrast to Zn and Cu, Pb regresses to a value of 0.83 ppm at Mg#70 for Hawaiian and Reunion volcanics, which is much less than the average value for Pb in OIB volcanics, but higher than for MORB.

Average Zn, Cu, and Pb contents of magmatic-arc basalts are 77, 108, and 1.9 ppm, respectively. In basalts, Zn tends to be incompatible, but a dual incompatible and compatible behavior can occur at high SiO2 contents. Dacites may average near 55 ppm Zn, but peralkalic rhyolite can contain >300 ppm Zn. A dual compatible and incompatible nature occurs for Cu. Most common, particularly in submarine volcanics, is a compatible trend, with a Cu content of around 80 ppm at a Mg# of 60, which decreases to less than 40 ppm at a Mg# of 30. The incompatible trend of increasing Cu can achieve >200 ppm at a Mg# of 30, leaving a gap approaching 100 ppm at that Mg#. The gap is less obvious on a plot of Cu vs. SiO2, but is still there. The compatible trend is proposed to result from sulfur-saturated magmas, whereas the incompatible trend is believed to result from sulfur-deficient magmas. Support for this hypothesis is found in sparse sulfur-isotope data. Zn and Cu both can be incompatible over an extended range of Mg#s or silica content. When Zn and Cu are both compatible, Cu decreases more than twice as rapidly as Zn.

Primitive magmas at Mg#70 average about 50 ppm Zn for submarine Mariana arc basalts and 58 ppm for forearc boninites, contents close to MORB values. Mariana arc basalts have a Zn content of ~45 ppm estimated at Mg#70. Cu varies more widely than Zn in primitive magmas, being about 50 ppm Cu for Mariana Islands volcanics and 120 ppm for Kermadec Islands volcanics, a range broadly around MORB values. Average Pb contents are 1.9 ppm for island-arc tholeiites, 5.6 ppm for high-Al basalt, and 3.2 ppm for alkali basalt with average boninite of approximately 1.8 ppm. Back-arc-basin basalts in the deepest parts of the Mariana trough have Pb contents of 0.45 ppm, but more shallow parts may exceed 1.0 ppm Pb. Although the lower contents are similar to MORB values, the 208Pb/204Pb values are greater than Pacific Ocean MORB. At Mg#70 for rocks from the Tonga and Kermadec island arcs, the Pb content is about 0.1 ppm, similar to MORB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号