首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The idea of predicting earthquakes by continuously monitoring temporal variations in the tidal response of the medium was suggested by Beaumont and Berger in 1974. However, it became possible to implement the idea only recently. This possibility has arisen due to the deployment of Global Seismic Network (GSN), which collects the data on tidal tilts and gravity in the epicenters of strong earthquakes before and after the strongest events. In this paper, we present the results of model analytical and numerical calculations of the elastic displacements of the Earth’s surface caused by the earthquakes and their preparatory processes. The analytical calculations are limited to the model of a uniform elastic halfspace; the numerical calculations, in addition to this model, also cover the models with radially heterogeneous distributions of elastic moduli in the crust and in the upper mantle, which are determined by the PREM model. We describe the results of modeling temporal variations in the tidal response of the medium in the vicinity of the source of a catastrophic earthquake. The model of seismic source is specified by the length and the orientations of the fault plane and by the value of the discontinuity in the tangential component of the displacement vector on the opposite sides of the fault. The model is based on the GPS data on the horizontal and vertical displacements of the Earth’s surface. We suggest the method for determining temporal changes in the tidal response of the medium in the seismically active regions. This method improves the sensitivity and time resolution of the standard techniques of sliding-window analysis by more than an order of magnitude. The comparative analysis of temporal variations in the tidal response of the medium in the zones of the magnitude 9 earthquake in Japan (March 9, 2011) illustrates the described approach.

  相似文献   

2.
The idea of predicting earthquakes by continuously monitoring temporal variations in the tidal response of the medium was suggested by Beaumont and Berger in 1974. However, it became possible to implement the idea only recently. This possibility has arisen due to the deployment of Global Seismic Network (GSN), which collects the data on tidal tilts and gravity in the epicenters of strong earthquakes before and after the strongest events. In this paper, we present the results of model analytical and numerical calculations of the elastic displacements of the Earth??s surface caused by the earthquakes and their preparatory processes. The analytical calculations are limited to the model of a uniform elastic halfspace; the numerical calculations, in addition to this model, also cover the models with radially heterogeneous distributions of elastic moduli in the crust and in the upper mantle, which are determined by the PREM model. We describe the results of modeling temporal variations in the tidal response of the medium in the vicinity of the source of a catastrophic earthquake. The model of seismic source is specified by the length and the orientations of the fault plane and by the value of the discontinuity in the tangential component of the displacement vector on the opposite sides of the fault. The model is based on the GPS data on the horizontal and vertical displacements of the Earth??s surface. We suggest the method for determining temporal changes in the tidal response of the medium in the seismically active regions. This method improves the sensitivity and time resolution of the standard techniques of sliding-window analysis by more than an order of magnitude. The comparative analysis of temporal variations in the tidal response of the medium in the zones of the magnitude 9 earthquake in Japan (March 9, 2011) illustrates the described approach.  相似文献   

3.
For more than a decade, the global network of GPS stations whose measurements are part of the International GPS Service (IGS) have been recording cyclic variations in the radius vector of the geodetic ellipsoid with a period of one year and amplitude of ~10 mm. The analysis of the figure of the Earth carried out by us shows that the observed variations in the vertical component of the Earth’s surface displacements can induce small changes in the flattening of the Earth’s figure which are, in turn, caused by the instability of the Earth’s rotation. The variations in the angular velocity and flattening of the Earth change the kinetic energy of the Earth’s rotation. The additional energy is ~1021 J. The emerging variations in the flattening of the Earth’s ellipsoid lead to changes in the surface area of the Earth’s figure, cause the development of deformations in rocks, accumulation of damage, activation of seismotectonic processes, and preparation of earthquakes. It is shown that earthquakes can be caused by the instability of the Earth’s rotation which induces pulsations in the shape of the Earth and leads to the development of alternating-sign deformations in the Earth’s solid shell.  相似文献   

4.
Temporal dependences of the Earth’s earthquake distribution over seismic moments are analyzed in the period from 1962 through 2004. They are shown to group in the vicinities of three hierarchical levels. The average seismic moments at neighboring levels differ by three times. The variations in the number of earthquakes at neighboring hierarchical levels are opposite in phase. The distribution of earthquakes over seismic moments at each level is described by the gamma function.  相似文献   

5.
The idea of Beaumont and Berger [Beaumont and Berger, 1974] about the possibility of earthquake prediction by means of continuous monitoring of temporal changes in tidal response was able to achieve effective application only in recent years after the appearance of GPS-data on the Earth’s surface displacement field in the seismic regions and the Global Seismographic Network (GSN), containing tidal, tiltmetric, and gravimetric data of measurements in the epicentral areas. The results of statistical analysis of the tidal response of the medium in the vicinity of the epicenters of the earthquakes in Peru (2001), in Sumatra (2004), and in Chile (2010) are presented.  相似文献   

6.
The gravitational interaction in the Earth–Moon–Sun system is considered from the standpoint of influencing the formation of time variations in the geophysical fields and some natural processes. The analysis of the results of instrumental observations revealed the main periodicities and cycles in the time variations of subsoil radon volumetric activity with the same periods as the vertical component of the variations of the tidal force. The amplitude modulation of seismic noise by the lunar-solar tide is demonstrated. It is shown that the intensity of relaxation processes in the Earth’s crust has a near-diurnal periodicity, whereas the spectrum of groundwater level fluctuations includes clearly expressed tidal waves. Based on the data on the tilts of the Earth’s surface, the role of tidal deformation in the formation of the block motions in the Earth’s crust is analyzed. A new approach is suggested for identifying tidal waves in the atmosphere by analyzing micropulsations of the atmospheric pressure with the use of adaptive rejection filters.  相似文献   

7.
Based on the time series of observational variations of the length of day (LOD) and seismic data in the world, the relations of the decadal fluctuation and seasonal variation in the Earth’s rotation with global seismic activity are studied in this paper. The results suggest that there are overall correlations on temporal scale and regional discrepancy on spatial scale between global seismic activity and the Earth’s variable rotation, especially the seismic activity in the Eurasian seismic zone (not including southeast Asia) and the Lower California-Eastern Alaska seismic zone correlating well with the Earth’s variable rotation. According to the relations mentioned above, the observational data of the Earth’s rotation might provide a referential basis for monitoring global seismic activity.  相似文献   

8.
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth’s surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra–Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.  相似文献   

9.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

10.
The results of the long-term recording of thermal neutron flux near the Earth’s surface with the use of an unshielded scintillation thermal-neutron detector are presented. The data obtained indicate the presence of periodic variations in the thermal neutron flux with the lunar diurnal and the lunar monthly periods. A hypothesis about the existence in the Earth’s crust of radon-neutron tidal variations in the concentration of thermal neutrons, correlated with the Moon’s phases and which have the gravitational origin, is formulated and confirmed experimentally. A simple mathematical model is proposed, which satisfactorily describes the observed variations. The case of the anomalous behavior of thermal neutrons is presented, which correlates with the high local seismic activity.  相似文献   

11.
Based on the fractal analysis of the time series of the Earth’s surface vertical displacements in the region of the Japanese Archipelago, the maps of the estimates of seismic activity in the region over 2015 are constructed. The analysis of the maps revealed several segments of the territory which are prone to the emergence of significant earthquakes. The characteristic peculiarity is noted in the change of the behavior of the geophysical dynamic system—the Earth’s crust—before the occurrence of seismic events: the mechanism of transition to the critical state demonstrates the energy preservation of the low frequencies with the simultaneous energy decay of the middle and high frequencies, which differs from the behavior of the other dynamical systems.  相似文献   

12.
近期天山地震带地震活动固体潮调制的统计分析   总被引:1,自引:0,他引:1  
李金  蒋海昆  黄瑜  曲均浩  高朝军 《地震》2014,34(2):35-44
利用Schuster检验方法, 以潮汐体应力为计算量, 采用2010年1月1日至2012年8月31日天山中东段ML≥2.0的地震数据, 对天山地震带地震活动受固体潮触发情况从时、 空两方面进行统计分析。 研究结果显示, Schuster检验p值时间窗平滑结果与天山地震带较强地震的发生对应较好, 尤其是2011年11月1日尼勒克6.0级地震之前很长一段时间, Schuster检验p值时间窗平滑结果一直低于潮汐触发地震的阈值0.05, 而尼勒克6.0级地震发生后, 该值迅速恢复到较高水平, 反应了此次地震的发生与固体潮的密切关系; 从Schuster检验p值空间窗平滑结果看, 尼勒克6.0级地震也处于或接近潮汐调制触发地区。 因而, 从时、 空两方面的检验结果看, 尼勒克6.0级地震的发生受固体潮调制明显。  相似文献   

13.
日、月对地球表层海水的引潮力导致潮汐的周期性变化是一种成熟理论.地球除具有日、月、年潮汐规律外,还具有明显的准1800年、200年、50~70年、18.6年、9.3年和2.5~7年不同尺度的周期.本文通过将地球赤道半径和月球轨道半径投影到黄道面上,标定二者矢量半径之和的模的极值状态,创建了引潮力极大值和强潮汐的周期性指数KSEM.这对探讨和预测潮汐的时间分布和推断地球自转角速度变化规律提供了一种新途径.行星系统中木星和金星对地球的摄动影响最突出,但目前还没有一个行之有效的模型将日、地、月、木星、金星作为一个统一整体,对地球潮汐极值状态进行刻画.通过辨析这五大天体运动预设的位置关系的结构特征,进而考察KSEM指数与月球升交点和月球近地点会合周期的对应关系,以及对月球轨道运动不同的特征周期的叠加和定性分析,这对探讨强潮汐周期、厄尔尼诺现象和地震的时间分布规律提供了重要参考.  相似文献   

14.
By complex analysis of GPS velocities, seismicity, fractal dimensions of the spatial distribution of seismic epicenters, focal mechanisms of the earthquakes, and stress state of the Earth’s crust, four seismic zones (Balaken-Zagatala, Sheki-Gabala, Shamakhy-Ismailly, and Absheron) are revealed within the southern slope of the Greater Caucasus. The suggested method can be used as a criterion in seismotectonic zoning; it could also be useful in the assessment of seismic hazards in the collision zones.  相似文献   

15.
A three-dimensional geomechanical model of Southern California, which includes the mountain topography, fault tectonics, and main structural boundaries (the top of the lower crust and the Moho), is developed. The main stress state of the model is determined by the own weight of the rocks and by the horizontal tectonic motions identified from the GPS observations. The model enables tracking the changes which occur in the stress-strain state of the crust due to the evolution of the seismic process. As the input data, the model uses the current seismicity and treats each earthquake as a new defect in the Earth’s crust which brings about the redistribution of strains, elastic energy density, and yield stress of the crust. Monitoring the variations in the stress state of the crust and lithosphere arising in response to the seismic process shows that the model is suitable for forecasting the enhancement in seismic activity of the region and delineating the earthquake-prone areas with a reasonable probability on a given time interval.  相似文献   

16.
As a result of the analysis of both the monitoring data of the electric resistivity of the Earth’s crust at the Garm test site using a modified method of dipole sounding and the earthquake catalogue of this test site it is shown that annual periodicity exists not only in the variations of the electric resistivity of the Earth’s crust but also in seismicity. It is not clear yet whether the appearance of the annual periodicity in the variations of electric resistivity is related to the influence of the periodic processes of earthquake nucleation on this process or both processes are synchronized by a third, unknown process. The results of the investigation show that the annual component of time variations in the electric resistivity contains important information about the processes in the Earth’s crust and should not be filtered out but, in contrast, studied in detail. The joint analysis of periodic components in the compared time series of the electric resistivity of the Earth’s crust and earthquakes opens new possibilities for deeper understanding of the processes of seismicity genesis and for improving the methods of strong earthquakes prediction.  相似文献   

17.
Based on continuous GPS data, we analyze coseismic deformation due to the 2012 Indian Ocean earthquake. We use the available coseismic slip models of the 2012 earthquake, derived from geodetic and/or seismic waveform inversion, to calculate the coseismic displacements in the Andaman-Nicobar, Sumatra and Java. In our analysis, we employ a spherical, layered model of the Earth and we find that Java Island experienced coseismic displacements up to 8 mm, as also observed by our GPS network. Compared to coseismic offsets measured from GPS data, a coseismic slip model derived from multiple observations produced better results than a model based on a single type of observation.  相似文献   

18.
The stress state of the Earth’s crust in the region of the Chuya earthquake of 2003 (Gorny Altay) is studied using the data of long-term epicentral observations by dense networks of temporary stations. These data comprise 545 seismic events, which widely vary in energies and whose parameters are determined highly accurately. Two hierarchical levels of the stress field are revealed and their spatial structure and temporal behavior are investigated. It is shown that the subregional stress field, which is determined from the data on strong earthquakes, is predominantly stable across the studied area, where the regime of horizontal shear with submeridional orientation of principal pressure axes is observed. The local stress field calculated from the weak seismic events experiences regular variations, which are consistent with the block structure of the crust; this field is heightand time-dependent.  相似文献   

19.
The characteristics of the attenuation field of short-period shear waves in the region of Nevada nuclear test site (NNTS) are studied. The seismograms of underground nuclear explosions (UNEs) and earthquakes recorded by three seismic stations in 1975–2012 at the epicentral distances of up to 1000 km are processed by the methods based on the analysis of the amplitude ratios of Sn to Pn and Lg to Pg waves, as well as the S-coda envelopes for close events. It is shown that the structure of the attenuation field in the Earth’s crust and upper mantle in the NNTS region experienced significant temporal variations during the interval of nuclear operations. The strongest variations were associated with UNEs conducted in the Pahute Mesa area, which held about two-thirds of the most intense explosions. Our data indicate that temporal variations in the structure of the attenuation field are related to the migration of deep fluids. A comparison of the general characteristics of the attenuation field in the regions of the three large nuclear test sites is presented.  相似文献   

20.
The modern gravimetry methods are capable of measuring gravity with an accuracy of up to 10–10 of the normal value, which is commensurate with the accuracy of the up-to-date methods of displacement measurements by satellite geodesy. Significant changes, e.g., in the coseismic displacements of the Earth’s surface are recorded in the zones of large earthquakes. These changes should manifest themselves in the variations of gravity. Absolute measurements have been conducted by various modifications of absolute ballistic gravimeters GABL since the mid-1970s at the Klyuchi point (Novosibirsk) in the south of the West Siberian plate. Monitoring observations have been taking place in the seismically active regions since the 1990s. In this paper we consider the results of the long-term measurements of the variations in gravity and recent crustal displacements for different types of earthquakes (the zones of shear, extension, and compression). In the seismically active areas in the east of Russia, the longest annual series of absolute measurements starting from 1992 was recorded in the southeastern segment of Baikal region. In this area, the Kultuk earthquake with magnitude 6.5 occurred on August 27, 2008, at a distance of 25 km from the observation point of the Talaya seismic station. The measurements in Gornyi (Mountainous) Altai have been conducted since 2000. A strikeslip earthquake with magnitude 7.5 took place in the southern segment of the region on September 27, 2003. The effects of the catastrophic M = 9.0 Tohoku, Japan, earthquake of March 11, 2011 were identified in Primor’e in the far zone of the event. The empirical data are consistent with the results of modeling based on the seismological data. The coseismic variations in gravity are caused by the combined effect of the changes in the elevation of the observation point and crustal deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号