首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
通过沉积物柱孔隙水中甲烷,SO2-4,Cl-,δc(34S-SO2-4)、δc(13 C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律.测定结果显示两个站位(J-A和J-E)间隙水中SO2-4浓度随深...  相似文献   

2.
Subtropical sediment cores(QA09-1 and QA12-9) from the coastal zone of Qi'ao Island in the Zhujiang River Estuary were used to determine the rates of sulfate reduction and their response to experimental temperature changes. The depth distribution of the sulfate reduction rates was measured from whole-core incubations with radioactive tracer 35SO42-, and peaks of 181.19 nmol/(cm3·d) and 107.49 nmol/(cm3·d) were exhibited at stations QA09-1 and QA12-9, respectively. The profiles of the pore water methane and sulfate concentrations demonstrated that anaerobic oxidation of methane occurred in the study area, which resulted in an increase in the sulfate reduction rate at the base of the sulfate-reducing zone. Meanwhile, the sulfate concentration was not a major limiting factor for controlling the rates of sulfate reduction. In addition, the incubation of the sediment slurries in a block with a temperature gradient showed that the optimum temperature for the sulfate reduction reaction was 36℃. The Arrhenius plot was linear from the lowest temperature to the optimum temperature, and the activation energy was at the lower end of the range of previously reported values. The results suggested that the ambient temperature regime of marine environments probably selected for the microbial population with the best-suited physiology for the respective environment.  相似文献   

3.
《Marine and Petroleum Geology》2012,29(10):1884-1898
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

4.
南海东北部沉积物顶空气甲烷含量较高,海底存在明显的甲烷渗溢现象。该海域6个沉积物岩心的孔隙水硫酸盐浓度和顶空气甲烷含量随深度变化而变化,出现明显的硫酸盐-甲烷互相消耗区域,硫酸盐和甲烷浓度均急剧下降。HD109、HD170、HD196A、HD200、HD319和GC10等6个岩心的硫酸盐还原-甲烷厌氧氧化界面(SMI)分别位于704、911、728、636、888、792cm处,完全落入全球水合物区富甲烷环境的SMI深度范围之内。强烈的甲烷渗溢过程使得硫酸盐-甲烷互相消耗作用加剧,并形成浅的SMI。浅的SMI显示了东北部存在强烈的甲烷渗溢活动以及强烈的甲烷厌氧氧化作用,具有天然气水合物成藏的典型特征。  相似文献   

5.
对珠江口淇澳岛海岸带3个站位(QA-11,QA-9和QA-14)的沉积物中不同形态的还原硫(酸可挥发性硫,黄铁矿和有机硫)、总有机碳(TOC)和孔隙水中SO42-,甲烷浓度进行了测定,并且利用稳态扩散模型计算其中2个站位(QA-9和QA-14)硫酸盐还原通量[1.74和1.14 mmol/(m2.d)]和甲烷厌氧氧化通量[0.34和0.29 mmol/(m2.d)]。研究结果表明由于潮间带沉积物受到SO42-供给的限制,因此位于潮间带的QA-11站位硫酸盐还原带较浅(约16 cm);在潮下带的QA-9和QA-14站位,随离海岸距离和水深的增加,硫酸盐还原通量呈现减小的趋势,并且硫酸还原逐渐受到可利用活性有机质的限制;甲烷厌氧氧化对硫酸盐还原的贡献表现出增加的趋势,由19.2%增加至25.5%。三个站位沉积物中按不同形态还原硫含量由大到小列出,它们是有机硫(OS)、黄铁矿(DS)、酸可挥发性硫(AVS)。沉积物中AVS的空间分布与硫酸盐还原通量有正相关性。QA-11和QA-14站位的黄铁矿与AVS硫的含量比值大于3,分别为7.9和3.6,表明两个站位的黄铁矿形成可能受硫酸盐还原作用的控制;QA-9站位黄铁矿与AVS硫的含量比值为2.2,暗示AVS向黄铁矿转化受到可利用活性铁的限制。  相似文献   

6.
The Shenhu area is one of the most favorable places for the occurrence of gas hydrates in the northern continental slope of the South China Sea. Pore water samples were collected in two piston cores (SH-A and SH-B) from this area, and the concentrations of sulfate and dissolved inorganic carbon (DIC) and its carbon isotopic composition were measured. The data revealed large DIC variations and very negative δ 13C-DIC values. Two reaction zones, 0–3 mbsf and below 3 mbsf, are identified in the sediment system. At site SH-A, the upper zone (0–3 mbsf) shows relatively constant sulfate and DIC concentrations and δ 13C-DIC values, possibly due to bioturbation and fluid advection. The lower zone (below 3 mbsf) displays good linear gradients for sulfate and DIC concentrations, and δ 13C-DIC values. At site SH-B, both zones show linear gradients, but the decreasing gradients for δ 13C-DIC and SO4 2− in the lower zone below 3 mbsf are greater than those from the upper zone, 0–3 mbsf. The calculated sulfate-methane interface (SMI) depths of the two cores are 10.0 m and 11.1 m, respectively. The depth profiles of both DIC and δ 13C-DIC showed similar characteristics as those in other gas hydrate locations in the world oceans, such as the Blake Ridge. Overall, our results indicate an anaerobic methane oxidation (AMO) process in the sediments with large methane flux from depth in the studied area, which might be linked to the formation of gas hydrates in this area.  相似文献   

7.
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

8.
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct–Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg− 1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.  相似文献   

9.
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of ?50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO 4 2? and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.  相似文献   

10.
A newly developed marine electromagnetic (E-M) system was used to create apparent porosity maps of the uppermost 20 m of sediments on the seafloor. Measurements of electrical conductivity were interpreted to give the porosity of the bottom sediments and underlying units. The data were collected continuously in a surveying mode using two receivers at different spacings to improve the resolution of porosity as a function of depth. The variations in apparent porosity over the area correlate well with information obtained from cores and acoustic profiles.

Acoustic profiles indicated the presence of biogenic gas in the central region of the survey area. The absence of distinct changes in apparent porosity over regions of gas allows us to conclude that the concentration of gas trapped within the Queen Charlotte muds does not exceed about 4% of the sediment by volume if we assume that the gas displaces fluid in the sediment.

A buried, lower porosity layer was detected, its position reflecting changes in the depth to the glaciomarine layer. Mapped variations in apparent porosity are well correlated with features on the acoustic record. This illustrates the system's ability to obtain continuous profiles of apparent porosity over seafloor features. The marine E-M survey provided rapid areal coverage, and, combined with the acoustic profiles, information on the porosity of deeper units.  相似文献   


11.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

12.
在2011年7月利用35SO2-4培养示踪法测定九龙江河口两个站位(A站位位于咸淡混合区,盐度3~5;B站位位于海相区,盐度20~25)沉积柱中硫酸盐还原速率的垂直分布。结果显示A站位沉积柱中硫酸盐还原速率变化范围为54~2 345nmol/(cm3·d),从表层到底部先增大后减小,最大值出现在20cm深度附近;B站位硫酸盐还原速率在24~987nmol/(cm3·d)之间,分别在10cm和78cm深度附近出现两个峰值,分别为876nmol/(cm3·d)和987nmol/(cm3·d)。综合分析两个站位孔隙水中SO2-4、甲烷浓度和沉积物中总有机碳、温度和氧化还原电位的垂直变化趋势与其硫酸盐还原速率的分布规律,表明A站位沉积物中硫酸盐还原以有机矿化为主;B站位受到有机质矿化和甲烷厌氧氧化的共同作用;两个站位硫酸盐还原速率及垂直分布趋势受孔隙水中SO2-4浓度、有机质活性和温度的共同影响;根据各个层位硫酸盐还原速率估算两个站位硫酸盐还原通量(以硫计)分别为527.9mmol/(m2·d)和357.1mmol/(m2·d),表明硫酸盐还原是九龙江河口有机质厌氧矿化的重要路径。  相似文献   

13.
Methane concentrations in some sediment cores from the Kodiak Shelf and adjacent continental slope increase with depth by three or four orders of magnitude and exceed the solubility in water at ambient conditions. Acoustic anomalies in seismic-reflection records imply that methane-rich sediment is widespread. Molecular composition of hydrocarbon gases and isotopic composition of methane indicate gas formation by shallow biogenic processes. Stratigraphic positions of acoustic anomalies in Quaternary glacial and posttransgressive sediments suggest that these units are likely sources of gas. A seep along the extension of a fault may be gas venting from a deeper thermogenic source.  相似文献   

14.
Abstract

Chemical, microbiological, and geophysical measurements have been carried out on sediment cores collected from Holyhead Harbour and the Western Irish Sea, where acoustic subbottom profiling has established the presence of large areas of acoustically turbid sediments, commonly referred to as “gassy” sediments. Gas analysis of these cores have shown that the acoustic turbidity was most probably due to high concentrations (>100 nM/mL) of methane occurring at subsurface depths.

Microcosm experiments on sediment slurries from Holyhead Harbour confirm that acetate and H2/CO2 are important precursors for methane generation. In sediments from Holyhead Harbour methanogenesis could be slightly stimulated by the addition of H2/CO2 and sulfate (1 mM). This suggested that in surface sediments sulfate reduction and methanogenesis can occur concurrently. Such a situation may explain the appearance of gas plumes and gas pockets detected acoustically at the sediment surface in several regions of the Western Irish Sea. More detailed studies are needed to evaluate fully why some sedimentary environments in the Western Irish Sea are more prone than others to gas accumulation.  相似文献   

15.
Sediment cores collected during the SPASIBA expedition in 1991 were analysed for their trace- and major element concentrations. Leachable (0.1 N HCl) as well as residual concentrations were determined. Fe and Mn were measured in the interstitial waters to characterize redox conditions. Lateral distribution patterns of solid phase Cu, Cd, Ni, Pb and Zn show a small increase in concentration from the Lena Delta in seaward direction. In general concentrations of these metals are very low and similar to natural background values. With some exceptions, solid phase profiles with depth of all investigated elements do not show strong variations. No enrichment of Pb and Zn in surface layers was found. Remobilization processes and transport of particles enriched in Mn are responsible for Mn accumulation in a particular area. Pore-water concentrations of dissolved Mn in the latter sediments are very high (> 700 μM) and suggest strong Mn reduction directly below the sediment-water interface. In contrast to Mn, the depth profiles of Cd show a surface layer with lower concentrations and an increase deeper down the sediment. The C/N ratio in the sediment decreases from 13 in the Lena mouth to 9 in the more marine part of the Laptev Sea. Surface sediments in the Laptev Sea are very uniform and homogeneous and show only small concentration gradients.  相似文献   

16.
Vertical profiles of pH, Eh, and major and minor chemical constituents in interstitial waters have been studied in four piston cores from deep-sea basins of the Japan Sea. Sulfate concentration decreases remarkably with increasing depth in three cores, and hydrogen sulfide is observed in two cores although the overlying bottom water is highly aerated. Three types of interstitial waters are observed in the four cores: (1) alkalinity and manganese concentration increase gradually with increasing depth, and sulfate reduction is not appreciable, (2) alkalinity increases and sulfate concentration decreases remarkably, and hydrogen sulfide is not detected, and (3) alkalinity increases and sulfate concentration decreases remarkably, and hydrogen sulfide is observed. Factors controlling the chemical composition of interstitial waters are discussed.  相似文献   

17.
Vertical gas profiles of N2, N2O and O2were obtained in intact sediment cores from a Tagus estuary salt marsh using membrane inlet mass spectrometry. This technique allows direct measurements of dissolved gas concentrations with minimal disturbance. O2concentrations decreased sharply with depth, becoming undetectable below 14mm. Denitrification products (N2and N2O) occurred in the surface layer of the sediment where O2was present. Diffusion of N2and N2O from the anaerobic zone, denitrification in anaerobic microsites and aerobic denitrification are possible explanations for this observation. N2was the sole product of denitrification in control sediment cores probably because of the great demand for electron acceptors in this sediment. The addition of NO3and CH3CO2increased the concentrations of N2and N2O in the sediment. Significantly higher concentrations in treated cores occurred between 1·5 and 2·0cm for N2and between 0·5 and 1·5cm for N2O. The peak in N2concentration occurred in the anaerobic zone of the sediment, close to the aerobic–anaerobic interface while the peak in N2O concentration occurred above this interface where concentrations of O2were approximately 10μM. This is indicative that, in this sediment, production of N2O is less sensitive to the presence of O2than reduction of N2O to N2.  相似文献   

18.
南海北部琼东南盆地海底存在着巨型麻坑, 现有研究多认为其形成主要与海底流体渗漏有关。目前对琼东南盆地深海沉积物地球化学特征及麻坑区的生物地球化学过程等尚不清楚。文章选取南海北部琼东南盆地C14、C19两个站位岩心样品, 进行了总硫(TS)、总碳(TC)、总有机碳(TOC)、铬还原性硫化物(CRS)及其δ34SCRS值测试, 并结合总氮/总碳(TN/TOC)比值和已发表的孔隙水中SO42-浓度等进行了地球化学特征分析。研究表明: C14站位以3.91m bsf (below seafloor)为界, 上下分别存在有机质参与的硫酸盐还原反应(OSR)和甲烷厌氧氧化作用(AOM)驱动的硫酸盐还原反应(SR); 3.91m bsf以上的部位沉积物的TS、TC含量均低于3.91m bsf以下部位, 且沉积物孔隙水中SO42-浓度由3.91m bsf以上的缓慢凹型减少变成3.91m bsf以下的线性减少, 说明该处成为沉积物中地球化学特征分界的明显标志; 在3.91m bsf以下, 受到甲烷渗漏的影响。C19站位沉积物中TS与TC含量由浅到深逐渐增加, 但与TN/TOC比值变化呈现几乎相反趋势, 即整个岩心以OSR为主, 并呈现出有机质早期成岩阶段的沉积现象。C14和C19两个站位柱状沉积物的δ34SCRS值变化范围分别为-50.2‰~-46.9‰和-50.1‰~-42.0‰ (V-CDT标准), 均显示出了较为偏负的硫同位素值, 表明研究区主要的生物化学过程是在相对开放体系下硫酸盐还原作用的结果, 综合说明该研究区麻坑的甲烷流体已经喷发, 目前可能处于衰退期, 甚至已经不活跃, 该结果与前人的认识基本一致。  相似文献   

19.
使用重力取样器、渔网、深潜器等手段,已经在海底及以下浅表层的区域采获天然气水合物样品,但关于浅表层水合物的发育机制、分布规律、与海底地形的关系等问题还缺乏基本认识。根据2006年鄂霍次克海天然气水合物调查航次的调查数据,发现萨哈林东北陆坡区,特别是中、下陆坡区发育大量海底凸起。这些凸起一般呈不对称的丘形,宽几百米,高几十米。与海底沙波、沙脊不同,海底凸起为孤立海底地形,在南北方向上并不连续。海底剖面仪结果清楚地显示古陆坡凸起的发育。现今海底陆坡凸起的幅度普遍地要小于古陆坡凸起的幅度,个别地方古今陆坡凸起的形态有所变化,但大部分古、今陆坡凸起是一一对应的,基本形态没有根本变化。在萨哈林陆坡地区存在两个方向的挤压应力场,分别是由德鲁根盆地向萨哈林陆坡方向的挤压应力场和萨哈林陆坡沿萨哈林走滑断裂向南的挤压应力场,海底陆坡凸起是这两大应力场复合作用的结果。浊反射区中的游离气是底辟构造中的超高压多相物质向上迁移形成的,浊反射区上方对应的海底凸起应该是宏观构造挤压和局部底辟发育叠合的结果,浊反射区上方的海底凸起,在形态等方面应该和其他仅由挤压构造原因形成的凸起有所区别,比如顶部发育裂口等。在底辟构造中,由于游离气体的向上迁移,在整个水合物稳定域中从下到上,直至海底都可能形成水合物。  相似文献   

20.
Organic contaminants from several different chemical classes were analyzed in surface sediments along a transect from the head to the mouth of Narragansett Bay. The chemical classes included total hydrocarbons, polycyclic aromatic hydrocarbons, substituted benzotriazoles and phthalic acid esters. Sediment concentrations of all compounds were highest in the Providence River and decreased with distance downbay. The observed decreases were approximately exponential for all compounds; however, the distances at which the concentrations decreased to one-half of their initial concentrations (half-distances) were different.The depth distributions of these compounds in sediment cores from three locations were also investigated. A sediment core collected near the head of the bay (Conimicut Point) showed a well defined historical record of contaminant input to the bay. At a mid-bay location (North Jamestown), however, the record was smeared because of extensive bioturbation.A sediment core collected near the mouth of the bay (Rhode Island Sound) showed a subsurface increase for all of the measured compounds. The results of detailed analyses suggest that this horizon may have been influenced by dredge spoil material originally from the head of the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号