首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two‐phased. We had an opportunity to quantitatively test the two‐phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low‐head dams were removed (~3–4 m) and ~65 000 m3 of sand‐sized sediments were discharged to low‐gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two‐phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly‐formed channel. Fitting functional forms to the data for both sites, we found that two‐phase exponential models with changing decay constants fit the erosion data better than single‐phase models. Valley width influences the two‐phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re‐supply from the upstream impoundments, and base flows. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

3.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
《国际泥沙研究》2019,34(6):537-549
Dam removal can generate geomorphic disturbances, including channel bed and bank erosion and associated abrupt/pulsed release and downstream transfer of reservoir sediment, but the type and rate of geomorphic response often are hard to predict. The situation gets even more complex in systems which have been impacted by multiple dams and a long and complex engineering history. In previous studies one-dimensional (1-D) models were used to predict aspects of post-removal channel change. However, these models do not consider two-dimensional (2-D) effects of dam removal such as bank erosion processes and lateral migration. In the current study the impacts of multiple dams and their removal on channel evolution and sediment delivery were modeled by using a 2-D landscape evolution model (CAESAR-Lisflood) focusing on the following aspects: patterns, rates, and processes of geomorphic change and associated sediment delivery on annual to decadal timescales. The current modeling study revealed that geomorphic response to dam removal (i.e., channel evolution and associated rates of sediment delivery) in multiple dam settings is variable and complex in space and time. Complexity in geomorphic system response is related to differences in dam size, the proximity of upstream dams, related buffering effects and associated rates of upstream sediment supply, and emerging feedback processes as well as to the presence of channel stabilization measures. Modeled types and rates of geomorphic adjustment, using the 2-D landscape evolution model CAESAR-Lisflood, are similar to those reported in previous studies. Moreover, the use of a 2-D method showed some advantages compared to 1-D models, generating spatially varying patterns of erosion and deposition before and after dam removal that provide morphologies that are more readily comparable to field data as well as features like the lateral re-working of past reservoir deposits which further enables the maintenance of sediment delivery downstream.  相似文献   

6.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Compared to downstream fining of a gravel‐bedded river, little field evidence exists to support the process of downstream fining in large, fine sand‐bedded rivers. In fact, the typically unimodal bed sediments of these rivers are thought to produce equal mobility of coarse and fine grains that may discourage downstream fining. To investigate this topic, we drilled 200 sediment cores in the channel beds of two fine‐grained sand‐bedded reaches of the Yellow River (a desert reach and a lower reach) and identified a fine surface layer (FSL) developed over a coarse subsurface layer (CSL) in the 3‐m‐thick bed deposits. In both reaches downstream, the thickness of the FSL increased, while that of the CSL decreased. Comparison of the depth‐averaged median grain sizes of the CSL and the FSL separately in both reaches shows a distinct downstream fining dependence to the median grain size, which indicates that at a large scale of 600‐800 km, the CSL shows a significant downstream fining, but the FSL shows no significant trends in downstream variations in grain size. This result shows that fine sediment supply (<0·08 mm median grain size) from upstream, combined with lateral fine sediment inputs from tributaries and bank erosion, can cause a rapid fining of the downstream channel bed surface and can develop the FSL layer. However, in the desert reach, lateral coarse sediment supply (>0·08 mm median grain size) from wind‐borne sediments and cross‐desert tributaries can interrupt the FSL and coarsen the channel bed surface locally. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
LINTRODUCTIONJinghongHydraulicPowerPlant,locatedintheload,erreachesofLanchangmyer,trib.ofMekong,isintheNorthOfJinghongCity.Thepowerstationisamultipurposehydro-junction,includingelectricpowergeneration,shipping,floodcontrol,cultivahonandwatersupply.SimaoPort,animportanttransportcenterinSimaoDistriCt,YunnanProvince,isabollt80kmaamsuPStreamofthedam.Anerthereservoirisimpounded,thewaterstagewillriseandagreatamountofsedimentwillbedepositedintheriverbedinevitably.Asaresult,itisverylikelyt…  相似文献   

11.
Abstract

River science and management often require a design or reference discharge. The common (and sometimes unavoidable) use of such discharges may, however, obscure the fact that the magnitude and frequency of critical flows can differ due to various hydrological, geomorphological, and ecological criteria. Threshold stages and discharges were identified for six lower Brazos River, Texas gaging stations corresponding to thalweg connectivity, bed inundation, high sub-banktop flows, channel–floodplain connectivity (CFC), and overbank flooding. Critical flows were also identified for estimated thresholds for sandy bedform and medium gravel mobility, critical specific stream power for potential channel modifications, and cohesive-bank channel erosion. These thresholds have variable relationships to mean, median, and maximum flows. For four of the six stations, daily recurrence probabilities for all but flood flows are at least 1%, and as high as 11%. All stations achieve channel–floodplain connectivity at stages less than banktop. Estimated threshold flows for sediment mobility and channel erosion occur relatively frequently, with daily probabilities of 2–77%. Critical flows for bank erosion occur least often, and for sandy bedform and gravel mobility most often. Thalweg connectivity is always maintained at all sites, while bed inundation flows have a daily probability of about 80% or more. Overall, results suggest that no single flow level is dominant in hydrological or geomorphic dynamics, and that the frequency of a given threshold varies considerably even along a single river. The results support the idea that multiple flow levels and ranges are necessary to create and maintain the hydrological, geomorphological, and ecological characteristics of rivers, and that no single flow level is a reliable determinant of fluvial state.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

12.
1 INTRODUCTION Increasing attention is being given to sedimentation hazards downstream from reservoirs as dams built during the past century accumulate progressively greater volumes of sediment. The sediment storage both decreases reservoir capacity and operating efficiency of the dam, and creates a 搒ediment-shadow?downstream where sediment-starved flows commonly erode channel boundaries and create long-term channel instabilities. Numerous studies have documented downstream channel change…  相似文献   

13.
Dam break flows and resulting river bed erosion can have disastrous impacts on human safety,infrastructure,and environmental quality.However,there is a lack of research on the mobility of non-uniform sediment mixtures resulting from dam break flows and how these differ from uniform sized sediment.In this paper,laboratory flume experiments revealed that coarse and fine fractions in non-uniform sediment had a higher and a lower bed-load parameter,respectively,than uniform sediments of the same size.Thus,the finer fractions were more stable and the coarser fractions were more erodible in a nonuniform bed compared to a uniform-grained bed.These differences can be explained by the hiding and protrusion of these fractions,respectively.By investigating changes in mobility of the mixed-size fractions with reservoir water levels,the results revealed that at low water levels,when the coarser fractions were only just mobile,the bed-load parameter of the finer fractions was higher than the coarser fractions.The opposite was observed at a higher water level,when a significant proportion of the coarsest fractions was mobilized.The higher protrusion of these grains had an important effect on their mobility relative to the finer grains.The transported sediment on these mixed-sized beds was coarser than the initial bed sediment,and became coarser with an increase in reservoir water level.  相似文献   

14.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A mobile-bed, undistorted physical model (1:40) has been used to investigate different sediment supply strategies to the Old Rhine through bank protection removal and modifications of groyne dimensions and configuration, which cause bank erosion. This trained channel was previously the main bed of the upper Rhine downstream of Basel (Switzerland), but it has an artificially low flow regime since the construction of the Grand Canal d'Alsace, a navigation canal, and a flow control dam at Kembs (France). Training works and subsequent channel incision have also greatly reduced sediment transport rates and created a heavily armoured bed. The modelled pilot site has a groyne field on the left bank. Results show that the currently existing groynes at the site are not effective in creating high bank-side velocities conducive to bank erosion, even for flow rates significantly higher than the mean annual flow rate. The river bank has also proved to be more resistant than previously thought, allowing long stretches of bank protection to be safely removed. The physical model testing process has produced a new configuration for the groyne field, where two higher, larger island groynes are placed further apart than the three existing attached groynes. This innovative approach has proved effective, causing bank erosion for flow rates below the mean annual flow rate, with consistent erosion being observed. It has also been found that such a configuration does not pose a hazard for the Grand Canal d'Alsace, which is situated next to the Old Rhine, through excessive bank erosion during high flow events.  相似文献   

16.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Many models of river meander migration rely upon a simple formalism, whereby the eroding bank is cut back at a rate that is dictated by the flow, and the depositing bank then migrates passively in response, so as to maintain a constant bankfull channel width. Here a new model is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank. It is assumed that the eroding bank consists of a layer of fine‐grained sediment that is cohesive and/or densely riddled with roots, underlain by a purely noncohesive layer of sand and/or gravel. Following erosion of the noncohesive layer, the cohesive layer fails in the form of slump blocks, which armor the noncohesive layer and thereby moderate the erosion rate. If the slump block material breaks down or is fluvially entrained, the protection it provides for the noncohesive layer diminishes and bank erosion is renewed. Renewed bank erosion, however, rejuvenates slump block armoring. At the depositing bank, it is assumed that all the sediment delivered to the edge of vegetation due to the transverse component of sediment transport is captured by encroaching vegetation, which is not removed by successive floods. Separate equations describing the migration of the eroding and depositing banks are tied to a standard morphodynamic formulation for the evolution of the flow and bed in the central region of the channel. In this model, the river evolves toward maintenance of roughly constant bankfull width as it migrates only to the extent that the eroding bank and depositing bank ‘talk’ to each other via the medium of the morphodynamics of the channel center region. The model allows for both (a) migration for which erosion widens the channel, forcing deposition at the opposite bank, and (b) migration for which deposition narrows the channel forcing erosion at the opposite bank. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This work deals with the impacts of dams on large gravel -bed rivers in terms of altering coarse transport regimes and the relationship with river morphodynamics. Using data collected by a tracer -based monitoring programme carried out in a 4 -km -long study sector of the Parma River (Italy), located downstream from a relatively recently established dam, we applied a virtual velocity approach to estimate the coarse bed material load at four river cross -sections. Monitoring and calculation results provided new insights into the impacts of the dam on streambed material mobility and the sediment regime over the 17 -month calculation period. A longitudinal gradient of effects was observed along the study sector. Sections located closer to the dam are characterized by more evident impacts due to deficits in coarse sediment input from upstream. Sediment mobility here is strongly altered, especially in the highly armoured main channel, and the overall bed material load is extremely low. A partial recovery of sediment dynamics was observed at the sections located further from the dam, where estimates indicate higher sediment yield. The observed longitudinal trend in the coarse sediment transport regime matches the morphology, as the river shifts downstream from a sinuous configuration with alternate bars to a wandering one. The novel insights into alteration of coarse sediment dynamics and the relationship with river morphodynamics are potentially applicable to many other fluvial contexts affected by similar impoundments. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Restoration projects in the United States typically have among the stated goals those of increasing channel stability and sediment storage within the reach. Increased interest in ecologically based restoration techniques has led to the consideration of introducing beavers to degraded channels with the hope that the construction of beaver dams will aggrade the channel. Most research on beaver dam modification to channels has focused on the long‐term effects of beavers on the landscape with data primarily from rivers in the western United States. This study illustrated that a role exists for beavers in the restoration of fine‐grained, low gradient channels. A channel on the Atlantic Coastal Plain was analyzed before, during, and after beaver dams were constructed to evaluate the lasting impact of the beaver on channel morphology. The channel was actively evolving in a former reservoir area upstream of a dam break. Colonization by the beaver focused the flow into the channel, allowed for deposition along the channel banks, and reduced the channel width such that when the beaver dams were destroyed in a flood, there was no channel migration and net sediment storage in the reach had increased. However, the majority of the deposition occurred at the channel banks, narrowing the channel width, while the channel incised between sequential beaver dams. The study indicated that where channels are unstable laterally and bank erosion is a concern, the introduction of beavers can be a useful restoration tool. However, because of the likelihood of increased channel bed erosion in a reach with multiple beaver dams, they may not be the best solution where aggradation of an incised channel bed is the desired result. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号