首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrochemical constituents in streams may originate from currently active sources at the surface and/or legacy sources from earlier surface inputs, waste deposits and land contamination. Distinction and quantification of these source contributions are needed for improved interpretation of tracer data and effective reduction of waterborne environmental pollutants. This article develops a methodology that recognizes and quantifies some general mechanistic differences in stream concentration and load behavior versus discharge between such source contributions. The methodology is applied to comparative analysis of stream concentration data for chloride (Cl), copper (Cu), lead (Pb), and zinc (Zn), and corresponding data for water discharge, measured over the period 1990–2018 in multiple hydrological catchments (19 for Cl, 11 for Cu and Zn, 10 for Pb) around the major Lake Mälaren in Sweden. For Cl, the average load fraction of active sources is quantified to be 19%, and the average active and legacy concentration contributions as 2.9 and 11 mg/L, respectively. For the metals, the average active load fractions at outlets are 1%–3% over all catchments and 9%–14% in the relatively few catchments with mixed metal sources. Average active and legacy concentration contributions are 0.14 and 3.2 μg/L for Cu, 0.05 and 1.5 μg/L for Pb, and 1.4 and 12 μg/L for Zn, respectively. This multi-catchment analysis thus indicates a widespread prevalence of legacy sources, with greater legacy than active concentration contributions for both Cl and the metals, and active contributions playing a greater role for chloride than for the metals. The relatively simple first-order methodology developed and applied in the study can be used to screen commonly available stream monitoring data for possible distinction of active and legacy contributions of any hydrochemical constituent in and across various hydrological catchment settings.  相似文献   

2.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

3.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

4.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995-2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31 % and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

5.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995:_2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31% and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

6.
7.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
亚热带地区典型水库流域氮、磷湿沉降及入湖贡献率估算   总被引:1,自引:0,他引:1  
为了探究汤浦水库流域氮、磷湿沉降对水库水体营养的贡献率,本研究对2014 2015年的汤浦水库流域4个采样点的雨水及3条溪流进行样品收集,测定其中磷和不同形态氮的质量浓度,分析汤浦水库流域大气湿沉降中氮、磷营养盐的分布特征,并估算氮、磷营养盐湿沉降对汤浦水库入库负荷的贡献率.结果表明:湿沉降中总氮(TN)平均浓度为1.02±0.58 mg/L,氨氮、硝态氮和有机氮浓度占TN浓度的比例分别为60.65%、34.07%和5.28%;总磷(TP)平均浓度为0.033±0.028 mg/L.4个采样点湿沉降中氮、磷浓度均表现为冬春季(少雨季)高、夏秋季(多雨季)低.空间上,王化点位的各形态氮和总磷浓度显著高于其他3个采样点.TN和TP年均湿沉降通量约为18.15和0.62 kg/(hm~2·a),年均沉降总量为834.94和28.39 t;库区TN和TP水面湿沉降量为24.14和0.82 t,直接贡献率占河流输入的1.77%和3.07%.湿沉降来源的氮、磷营养盐随河流输入的间接贡献率为8.3%和4.6%.综上所述,氮、磷湿沉降是水库外源营养的重要输入部分,深入掌握其时空分布特征及入库贡献率是进一步加强流域管理和减轻水库外源营养输入的重要前提.  相似文献   

9.
Concentrations and loads of N and P fractions were examined for lowland rivers, the Wye and Avon, draining a range of representative agricultural land-use types in two major UK river basins. Data collected over a 2-year period demonstrated important diffuse agricultural source contributions to N and P loads in these rivers. Ground water provided a major source of total dissolved nitrogen (TDN) loads, whereas near-surface sources provided a major contribution to total phosphorus (TP) loads. In terms of aquatic ecology, concentrations of nutrients, at times of eutrophication risk (spring and summer low flows) were of key environmental and management significance. Agricultural diffuse sources provided the major source of long-term P loads across the two basins. However, the results demonstrated the dominance of point-source contributions to TP and SRP concentrations at times of ecological risk. Point sources typically ‘tip the balance’ of dissolved inorganic P (soluble reactive P, SRP) above the 100 μg l−1 guideline value indicative of eutrophication risk. The significance of point sources for TP and SRP concentrations was shown by (a) the strong correlations between TP, SRP and B concentrations, using B as a tracer of sewage effluent, (b) the dominant contribution of SRP to TP concentrations and (c) the predominant pattern of dilution of SRP and B with flow. The clean Chalk streams draining low intensity grassland in areas of the Avon with sparse human settlement were oligotrophic and P limited with low SRP concentrations under spring and summer baseflows attributable to groundwater sources. The data provide important insights into the ecological functioning of different lowland stream systems. There was evidence of greater SRP losses and N-limitation in a stream which drains a pond system, demonstrating the importance of longer water residence times for biological nutrient uptake.  相似文献   

10.
珠江流域氮、磷营养盐入河量估算及预测   总被引:2,自引:2,他引:0  
徐鹏  林永红  杨顺顺  栾胜基 《湖泊科学》2017,29(6):1359-1371
针对日益严重的流域营养盐污染问题,以珠江流域为例,采用系统动力学模型与多主体农户和农村环境管理模型耦合构建反映农户生产决策实际污染过程的流域氮、磷营养盐排放仿真系统,模拟2000—2030年不同污染源的营养盐产生、排放和进入河流的污染过程,分析其污染特征、影响因素和演变趋势.结果表明:在基准情境下,珠江流域总氮(TN)入河量从2000年的5.79×10~5t增加到2030年9.45×10~5t,在2027年达到峰值(9.53×10~5t);总磷(TP)入河量逐年递增,年均增长率为2.0%,从2000年的7.9×10~4t增加到2030年1.4×10~5t.在TN入河量中,种植业贡献最多,其次是城镇污水、养殖业和农村污水,2000—2030年期间年均贡献率相应为43.5%、32.5%、19.2%和4.9%.在TP入河量中,2000—2030年种植业、养殖业、城镇污水和农村污水的年均贡献比例分别为35.6%、28.8%、21.5%和14.1%;2000—2010年,养殖业为第一污染源,其次是种植业、城镇污水和农村污水;2011年种植业的贡献比例(31.6%)开始超过养殖业(30.8%)成为首要污染.研究显示,流域营养盐排放仿真系统可为营养盐控制提供技术支持和理论依据.  相似文献   

11.
We have investigated the contributions of three dominant macrophyte species, Deyeuxia angustifolia, Carex lasiocarpa, and Carex pseudocuraica (covering about 10 304 km2), to carbon (C), nitrogen (N), and phosphorus (P) stocks in the largest freshwater marsh (17 300 km2) in China for a 3‐year period (from 2002 to 2004). The monthly biomass, seasonal, and annual net primary productivity (NPP), and nutrient concentrations of three species were measured. All three plant species showed rapid growth in the rainy season. The maximum and minimum production rates in the freshwater marsh were ~36.19 and ~9.92 g m?2 day?1, respectively. The total NPP accounts 1900–2700 g m?2 year?1 in the studied area. Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) concentrations in roots were higher than those in stem and leaf tissues. The vast beds of the three studied species comprise 80% of the grass covered marsh of Sanjiang plain, contributing annual nutrient stocks of ~10.99 × 106, ~788.36 × 103, and ~18.10 × 103 t (tonnes) for TOC, TN, and TP, respectively. Our results suggest that the nutrient bioaccumulation capacity in freshwater marshes depend mainly on plant species, which are decided by hydrological conditions. The nutrient stocks in the Sanjiang plain marsh have been greatly reduced because some of the area occupied by C. lasiocarpa was replaced by D. angustifolia as a result of succession caused by the changes of water table.  相似文献   

12.
A Bayesian chemistry-assisted hydrograph separation (BACH) approach was developed, based on calibration of a three-component recursive digital filter, that requires monthly water quality data only. This enables BACH to be applied to the large number of rural catchments for which continuous flow records and monthly water chemistry time series exist from ‘state of environment’ monitoring programmes, but little supplementary data required for more sophisticated analysis techniques. As well as estimating fast, medium, and slow flow components, BACH also estimates for each flow component a time-invariant concentration of the chemical tracers chosen, allowing flow path-specific loads to be calculated. The method was demonstrated using 15 years of total phosphorus (TP) and total nitrogen (TN) data from eight mesoscale catchments in the Waikato region of New Zealand’s North Island. Calibration was done separately for three 5-year data periods, and validated against data from the following 5-year period. Flow path separation and concentration predictions were consistent between data periods, indicating that the TP–TN combination contained sufficient information to reliably identify three flow paths in each catchment; an event-response near-surface flow path with high concentrations of both phosphorus and nitrogen, a seasonal shallow groundwater flow path with lower concentrations of TP but high concentrations of TN, and a deeper slower groundwater flow path characterised by generally low concentrations of both TP and TN. Based on this analysis, the catchments were able to be grouped in three hydro-types. This shows that commonly available water quality data can support robust, objective flow separation and nutrient load apportionment, even in the absence of other supporting data, provided appropriate modelling methods are used.  相似文献   

13.
Diffuse sediment pollution impairs water quality, exerts a key control on the transfer and fate of nutrients and contaminants and causes deleterious impacts on freshwater ecology. A variety of catchment sediment sources can contribute to such problems. Sediment control strategies and effective targeting of mitigation options therefore require robust quantitative information on the key sources of the sediment problem at catchment scale. Recent observations by Catchment Sensitive Farming Officers (CSFO's) in England have highlighted road verges damaged and eroded by passing vehicles, particularly large farm machinery, and livestock herd movement as visually important potential sources of local sediment problems. A study was therefore undertaken to assess the relative importance of damaged road verges as a suspended sediment source in three sub‐catchments of the Hampshire Avon drainage basin, southern UK. Road verge sediment contributions were apportioned in conjunction with those from agricultural topsoils and channel banks/subsurface sources. Time‐integrating isokinetic samplers were deployed to sample suspended sediment fluxes at the outlets of two control sub‐catchments drained by the Rivers Chitterne and Till selected to characterize areas with a low road network density and limited visual evidence of verge damage, as well as the River Sem sub‐catchment used to represent areas where road verge damage is more prevalent. The findings of a sediment source fingerprinting investigation based on a combination of intermittent sampling campaigns spanning the period 22/5/02–27/4/08 suggested that the respective overall mean relative sediment contributions from damaged road verges were 5 ± 3%, 4 ± 2% and 20 ± 2%. Relative inputs from damaged road verges for any specific sampling period in the River Sem sub‐catchment were as high as 33 ± 2%. Reconstruction of historical sources in the same sub‐catchment, based on the geochemical record stored in a floodplain depth profile, suggested that the significance of damaged road verges as a sediment source has increased over the past 15–20 years. The findings provide important information on damaged road verges as a primary source of suspended sediment and imply that catchment sediment control strategies and mitigation plans should consider such verges in addition to those agricultural and channel sources traditionally taken into account when attempting to reduce sediment pressures on aquatic resources. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
SD模型在洱海流域营养物削减策略研究中的应用   总被引:1,自引:1,他引:0  
针对洱海富营养化问题,本文在深入分析洱海流域营养物输运转移特征的基础上,应用VENSIM-DSS构建了洱海流域的社会、经济、技术、环境SD耦合模型.模型由7个子系统组成,确定了一套适用于洱海流域的耦合模型特征参数.对入湖TN、TP进行追根溯源,模拟结果表明洱海流域入湖TN主要来源于种植业子系统、畜牧业子系统、生活污水子系统和干湿沉降子系统,以上4大子系统占入湖TN的88%;入湖TP主要来源于种植业子系统、畜牧业子系统、生活污水子系统和水土流失子系统,以上4大子系统占入湖TP的89%.以此为基础通过设置4种不同的营养物削减情景,模拟未来10年入湖TN、TP的变化,并通过构建的政策评价子系统和DILLON模型定量评价不同削减方案的可行性,提出最优洱海流域营养物削减方案.  相似文献   

15.
The persistence effect contribution of legacy nutrients is often cited as a reason for little or no improvement in water quality following extensive implementation of watershed nutrient mitigation actions, yet there is limited knowledge concerning factors influencing this response, often called the “persistence effect.” Here, we adopted detrended fluctuation analysis and Spearman analysis methods to assess the influence of land use on the watershed phosphorus (P) persistence effect, using monthly water quality records during 2010–2016 in 13 catchments within a drinking water reservoir watershed in eastern China. Detrended fluctuation analysis was used to calculate the Hurst exponent α to assess watershed legacy P characteristics (α  ≈ 0.5, α  > 0.5, and α  < 0.5 indicate white noise, persistence, and anti‐persistence, respectively). Results showed weak to strong P persistence (0.60–0.81) in the time series of riverine P in the 13 catchments. The Hurst exponent α had negative relationships with agricultural land (R = ?.47, p = .11) and developed land (R = ?.67, p = .01) and a positive relationship with forest land cover (R = .48, p = .10). The persistence effect of riverine P was mainly determined by retention ability (biogeochemical legacy) and migration efficiency (hydrological legacy). A catchment with strong retention capacity (e.g., biomass uptake/storage and soil PO4 sorption) and low migration efficiency results in a stronger persistence effect for riverine P. In practice, source control is more effective in catchments with weak persistence, whereas sink control (e.g., riparian buffers and wetlands) is preferred in catchments with strong persistence effects.  相似文献   

16.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

18.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

19.
洱海流域低污染水类型、污染负荷及分布   总被引:7,自引:0,他引:7  
白献宇  胡小贞  庞燕 《湖泊科学》2015,27(2):200-207
为科学、合理地评估湖泊流域低污染水的类型及其污染负荷,以洱海流域为例,系统研究低污染水的概念及类型,确定了低污染水调查方法,并分析了洱海流域低污染水的来源、类型、产生量、污染物量和分布特征.结果表明,洱海流域低污染水主要包括污水处理厂处理尾水、城镇地表径流、农田排水(含村落地表径流)3种主要类型,产生量为20069×104m3/a.由低污染水带来的总氮(TN)负荷为1393 t/a,总磷(TP)负荷为77 t/a.从空间分布上看,洱海流域西部和北部片区低污染水TN、TP负荷比例最大,分别达到88%和87%,因此应主要针对西部和北部片区特点制定洱海流域低污染水控制措施.  相似文献   

20.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号