首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
A new approach to define surface/sub-surface transition in gravel beds   总被引:1,自引:1,他引:0  
The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (?? g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.  相似文献   

2.
地震预报研究的主攻方向: 动力数值预测   总被引:1,自引:0,他引:1  
尽管地震预测是一个举世公认的国际性科学难题,怛在强化各种减轻地震灾害措施的同时,仍须把地震的监测和预报作为中国地震局最为重要的任务。为此,需要高举攻克地震预测难题的旗帜,打破长期以来地震预测研究徘徊不前的局面。我们必须充分认识近年来地球物理观测技术和计算机技术所取得的重大进步和发展态势,并在此基础上制定地震预测研究的发展战略。以GPS为代表的空间对地观测技术,巨型高分辨率宽频带流动地震台阵观测技术以及电磁阵列观测技术的发展趋势表明,从布网观测走向阵列观测已经成为21世纪地球物理观测研究发展的基本方向。上述高新技术和计算机数值模拟技术的发展为地震动力学研究提供了前所未有的技术基础。为此,需要积极借助数值天气预报的经验,打破经验性地震预测的局限,把研究的注意力尽快转向以动力学为基础的地震数值预报。以地震数值预报为目标的GPS阵列地壳形变连续观测,高分辨率地壳上地幔结构探测,地壳动力学,地震孕育和破裂过程的理论、模拟试验和实际观测,数据同化和计算软件的开发应成为今后研究发展的重点。现在的问题是,需要我们强化多学科,多部门的组织协调,尽早在有条件的地区开展地震动力学数值预报的科学试验和相关的理论研究。这必将极大地促进我国地震科学基础研究的发展和地震预报水平的提高。  相似文献   

3.
The accelerated production and replacement of new electrical and electronic equipment demonstrates a tendency for the proportional increase in the generation of e‐waste. Developing countries experience similar social and environmental consequences from this trend, which compounds the other challenges associated with the already poor solid waste management in these regions. Moreover, the dangerous composition of some e‐waste amplifies the problems related to managing these materials. This mini‐review presents a brief overview of e‐waste management in Brazil, including technical aspects, scientific studies, and the challenges ahead. With the Brazilian National Policy of Solid Waste already in place, technical and scientific studies endorse measures that range from incorporating the informal recycling sector into the e‐waste management sector to encouraging the expansion of the recycling industry. All such actions, combined with an intensified commitment of electronic equipment manufacturers to reverse logistics, can improve e‐waste management in Brazil.  相似文献   

4.
Morphologies related to paleochannels are widespread through large areas of the Brazilian Amazonia. Despite the relevance for reconstructing the evolution of the largest fluvial system on Earth, detailed mapping of most of these features is still unavailable. The lack of works emphasizing Amazonian paleochannels represents an enormous bias toward the understanding of both migrating dynamics of Amazonian rivers through time and processes (e.g. tectonics, climate, sea‐level fluctuation) that might have promoted channel abandonment. A few previous studies have demonstrated the successful application of digital elevation model (DEM) collected during the Shuttle Radar Topography Mission (SRTM) for mapping morphologies related to paleochannels still preserved under forested lowland Amazonian areas. The present study applies different remote sensing techniques, including JERS‐1 90m, SAR/SIPAM‐6m, Landsat, and ASTER, to successfully unravel a myriad of paleochannels in Marajó Island (Amazon mouth), which were previously undetected using solely SRTM data. The results presented in this work are promising for mapping paleodrainage in other forested areas of the Amazonas basin. Considering the several problems involved on data acquisition aiming to approach the evolution of Amazonian rivers in space and time (e.g. large dimension, lack of natural geological exposures, difficult access, dense forest cover, and high cloud volume), a proper mapping of Amazonas paleodrainage using different remote sensing techniques is crucial to visualize potential paleochannel morphologies and patterns that are of high relevance for reconstructing the Amazonian fluvial dynamics through time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.  相似文献   

6.
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e. step pools and riffle pools) and semialluvial morphologies (i.e. boulder cascades and forced step pools) on bedload entrainment and transport. Results indicate that dynamics of bedload entrainment are influenced by differences in flow resistance attributable to morphology. Scaled fractional analysis shows that in reaches with high form resistance most bedload transport occurs in partial mobility fashion relative to the available bed material, while calibers finer than 16 mm attain full mobility during bankfull flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches exhibiting reduced form resistance. Our findings confirm that the Shields value for mobilization of the median surface grain size depends on channel gradient and relative submergence; however, we also find that these relations vary considerably for cobble and gravel bed channels due to proportionality between dimensionless shear stress and grain size. Exponents of bedload rating curves across sites correlate most with the D90s of the mobile bed, however, where grain effects are controlled (i.e. along individual streams), differences in form resistance across morphologies exert a primary control on bedload transport dynamics. Application of empirical formulae developed for use in steep alpine channels present variable success in predicting transport rates in forested snowmelt streams. Formulae that explicitly account for reductions in mobile bed area and high morphological resistance associated with woody debris provide the best approximation to observed empirical data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Historical archives of grey‐scale river channel imagery are extensive. Here, we present and test a methodology to extract detailed quantitative topographic data from such imagery of sand‐bed rivers. Extracting elevation information from rivers is difficult as they are characterized by a low relative relief (<4 m); the area of interest may be spatially extensive (e.g. active channel widths >500 m in large braided rivers); the rate of change of surface elevation is generally low except in the vicinity of individual channel banks where the rate of change is very high; there is the complication that comes from inundation; and there may be an added complication caused by blockage of the field of view by vegetation. Here, we couple archival photogrammetric techniques with image processing methods and test these for quantification of sand‐bed braided river dynamics, illustrated for a 500 m wide, 3 km long reach of the South Saskatchewan River, Canada. Digital photogrammetry was used to quantify dry areas and water edge elevations. A methodology was then used to calibrate the spectral signature of inundated areas by combining established two media digital photogrammetric methods and image matching. This allowed determination of detailed depth maps for inundated areas and, when combined with dry area data, creation of complete digital elevation models. Error propagation methods were used to determine the erosion and deposition depths detectable from sequential digital elevation models. The result was a series of elevation models that demonstrate the potential for acquiring detailed and precise elevation data from any historical aerial imagery of rivers without needing associated calibration data, provided that imagery is of the necessary scale to capture the features of interest. We use these data to highlight several aspects of channel change on the South Saskatchewan River, including bar movement, bank erosion and channel infilling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
M. F. Merck  B. T. Neilson 《水文研究》2012,26(25):3921-3933
This study examines the variability of in‐pool temperatures in Imnavait Creek, a beaded arctic stream consisting of small pools connected by shallow chutes, for the purpose of predicting potential impacts of climate variations on the system. To better understand heat fate and transport through this system, the dominant heat sources and sinks creating and influencing thermal stratification within even the smallest and shallowest pools must be quantified. To do this, temperature data were collected vertically within the pool water column and surrounding bed sediments during stratified conditions. These temperature and other supporting data (e.g. instream flow, weather data, and bathymetry) were used to formulate and develop an instream temperature model that captures the site‐specific processes occurring within the pools during summer low flow conditions. The model includes advective, air–water interface, and bed conduction fluxes, simplified vertical exchange between stratified pool layers, and attenuation of shortwave radiation within the water column. We present the model formulation, data collection methods used in support of model development and population, and the resulting model calibration and validation for one of the study pools. We also provide information regarding dominant heat sources and sinks and residence times of different layers within the stratified pool. We found that the dominant heat sources vary between stratified layers and that increases in thaw depths surrounding these pools due to possible climate changes can shift stratification, mixing, and instream storage dynamics, thereby influencing the fate and transport of heat and other constituents of interest (e.g. nutrients). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Despite the presence of gas in river beds being a well known phenomenon, its potential feedbacks on the hydraulic and thermal dynamics of the hyporheic zone has not been widely studied. This paper explores hypotheses that the presence of accumulated gas impacts the hydraulic and thermal dynamics of a river bed due to changes in specific storage, hydraulic conductivity, effective porosity, and thermal diffusivity. The hypotheses are tested using data analysis and modelling for a study site on the urban River Tame, Birmingham, UK. Gas, predominantly attributed to microbial denitrification, was observed in the river bed up to around 14% by volume, and to at least 0.8 m depth below river bed. Numerical modelling indicates that, by altering the relative hydraulic conductivity distribution, the gas in the river bed leads to an increase of groundwater discharge from the river banks (relative to river bed) by a factor of approximately 2 during river low flow periods. The increased compressible storage of the gas phase in the river bed leads to an increase in the simulated volume of river water invading the river bed within the centre of the channel during storm events. The exchange volume can be more than 30% greater in comparison to that for water saturated conditions. Furthermore, the presence of gas also reduces the water-filled porosity, and so the possible depth of such invading flows may also increase markedly, by more than a factor of 2 in the observed case. Observed diurnal temperature variations within the gaseous river bed at 0.1 and 0.5 m depth are, respectively, around 1.5 and 6 times larger than those predicted for saturated sediments. Annual temperature fluctuations are seen to be enhanced by around 4 to 20% compared to literature values for saturated sediments. The presence of gas may thus alter the bulk thermal properties to such a degree that the use of heat tracer techniques becomes subject to a much greater degree of uncertainty. Although the likely magnitude of thermal and hydraulic changes due to the presence of gas for this site have been demonstrated, further research is needed into the origins of the gas and its spatial and temporal variability to enable quantification of the significance of these changes for chemical attenuation and hyporheic zone biology.  相似文献   

10.
Long‐term observations are critical in hydrology to understand the dynamics of biological and physicochemical processes involved in and affected by the flux of water. Long‐term observations have been employed to provide basic understanding of the water cycle (e.g., infiltration, evaporation, run‐off generation, and groundwater–surface water interactions), but they are lacking in hydrologically relevant regions such as the Andes Mountains, including alpine watersheds. Although the call for long‐term data acquisition in Latin America has been made, the establishment of long‐term data collection centres remains logistically challenging. This ever‐growing scientific gap hinders our understanding of differences and similarities in hydrological processes of tropical and temperate regions. Furthermore, technological advances such as in situ optical sensors for water quantity and quality remain cost‐prohibitive for both short and long deployment at most existing research sites in Latin America, restricting researchers pursuing research funding or developing meaningful, intersite comparisons and syntheses. Here, we emphasize the importance of and need for rapid assessments (i.e., field campaigns conducted over a few days) for improved hypothesis development and mechanistic understanding of hydrological dynamics in Latin America. We report on rapid assessments conducted in the high‐elevation mountains (>3,000 m) of Colombia. Our results highlight rapidly changing dynamics in nutrient retention potential and dissolved CO2 (pCO2), as well as highly variable spatial distribution of water quality parameters (N, C, P, Cl) in areas with varying land use. We present an initial examination of the effects of land‐use change on stream nutrient dynamics in one of the most biodiverse and threatened ecosystems on Earth. We conclude that rapid assessments not only are necessary but also represent a cost‐effective way to develop clear, testable hypotheses to advance a hydrologic research agenda in Latin America and work towards long‐term hydrological knowledge and information for use by other scientists.  相似文献   

11.
We present a critical analysis of experimental findings on vegetation–flow–sediment interactions obtained through both laboratory and field experiments on tidal and coastal environments. It is well established that aquatic vegetation provides a wide range of ecosystem services (e.g. protecting coastal communities from extreme events, reducing riverbank and coastal erosion, housing diverse ecosystems), and the effort to better understand such services has led to multiple approaches to reproduce the relevant physical processes through detailed laboratory experiments. State-of-the-art measurement techniques allow researchers to measure velocity fields and sediment transport with high spatial and temporal resolution under well-controlled flow conditions, yielding predictions for hydrodynamic and sediment transport scenarios that depend on simplified or bulk vegetation parameters. However, recent field studies have shown that some simplifications on the experimental setup (e.g. the use of rigid elements, a single diameter, a single element height, regular or staggered layout) can bias the outcome of the study, by either hiding or amplifying some of the relevant physical processes found in natural conditions. We discuss some observed cases of bias, including general practices that can lead to compromises associated with simplified assumptions. The analysis presented will identify potential pathways to move forward with laboratory and field measurements, which could better inform predictors to produce more robust, universal and accurate predictions on flow–vegetation–sediment interactions. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology.  相似文献   

13.
Sites impacted by per- and polyfluoroalkyl substances (PFAS) pose significant challenges to investigation and remediation, including very low cleanup objectives, limited information on natural PFAS degradation processes in the subsurface, and the apparent mobility and persistence of PFAS. Consequently, monitored natural attenuation (MNA) may be considered less applicable to PFAS compared to biodegradable classes of chemicals such as petroleum hydrocarbons and chlorinated solvents that can completely biodegrade to innocuous end products. However, MNA has proven effective for certain non-degrading metals, metalloids, and radionuclides (e.g., chromium, arsenic, and uranium). To assess the applicability of MNA to PFAS, this paper reviews the fate and transport properties of PFAS in conjunction with the various physiochemical factors that control the subsurface movement of chemicals. This analysis demonstrates that two important retention processes: (1) chemical retention in the form of PFAS precursors, and (2) geochemical retention in the form of sorption and matrix diffusion to mitigate the movement and potential impacts of PFAS in groundwater that may form the scientific basis for applying MNA to PFAS contamination. This paper describes the scientific and regulatory basis for using MNA to manage PFAS-impacted groundwater.  相似文献   

14.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

15.
延庆地震台形变处理软件系统是利用Visual Basic语言,在Windows下开发的应用软件,操作简便,易于掌握.文中介绍了软件在数据处理、数据维护、生成各类报表、绘制曲线等方面的功能,同时也介绍了该软件在开发过程中的一些关键技术.  相似文献   

16.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
During the last two decades or so, studies on the applications of the concepts of nonlinear dynamics and chaos to hydrologic systems and processes have been on the rise. Earlier studies on this topic focused mainly on the investigation and prediction of chaos in rainfall and river flow, and further advances were made during the subsequent years through applications of the concepts to other problems (e.g. data disaggregation, missing data estimation, and reconstruction of system equations) and other processes (e.g. rainfall-runoff and sediment transport). The outcomes of these studies are certainly encouraging, especially considering the exploratory stage of the concepts in hydrologic sciences. This paper discusses some of the latest developments on the applications of these concepts to hydrologic systems and the challenges that lie ahead on the way to further progress. As for their applications, studies in the important areas of scaling, groundwater contamination, parameter estimation and optimization, and catchment classification are reviewed and the inroads made thus far are reported. In regards to the challenges that lie ahead, particular focus is given to improving our understanding of these largely less-understood concepts and also finding ways to integrate these concepts with the others. With the recognition that none of the existing one-sided ‘extreme-view’ modeling approaches is capable of solving the hydrologic problems that we are faced with, the need for finding a balanced ‘middle-ground’ approach that can integrate different methods is stressed. To this end, the viability of bringing together the stochastic concepts and the deterministic concepts as a starting point is also highlighted.  相似文献   

18.
Photogrammetric monitoring of small streams under a riparian forest canopy   总被引:2,自引:0,他引:2  
The recent advent of digital photogrammetry has enabled the modeling and monitoring of river beds at relatively high spatial resolution (0·01 to 1 m) through the extraction of digital elevation models (DEMs). The traditional approach to image capture has been to mount a metric camera to an aircraft, although non‐metric cameras have been mounted to a variety of novel aerial platforms to acquire river‐based imagery (e.g. helicopters, radio‐controlled motorized vehicles, tethered blimps and balloons). However, most of these techniques are designed to acquire imagery at flying heights above the riparian tree canopy. In relatively narrow channels (e.g. <20 m bankfull width), streamside trees can obscure the channel and limit continuous photogrammetric data acquisition of both the channel bed and banks, while still providing useful information regarding the riparian canopy and even spot elevations of the channel. This paper presents a technique for the capture and analysis of close‐range photogrammetric data acquired from a vertically mounted non‐metric camera suspended 10 m above the channel bed by a unipod. The camera is positioned under the riparian forest canopy so that the channel bed can be imaged without obstruction. The system is portable and permits relatively rapid image acquisition over rough terrain and in dense forest. The platform was used to generate DEMs with a nominal ground resolution of 0·03 m. DEMs generated from this platform required post‐possessing to either adjust or eliminate erroneous cells introduced by the extraction process, overhanging branches, and by the effects of refraction at the air–water interface for submerged portions of the channel bed. The vertical precision in the post‐processed surface generally ranged from ± 0·01 to 0·1 m depending on the quality of triangulation and the characteristics of the surface being imaged. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises.  相似文献   

20.
In Part 1 of this work (Akmaev, 1999), an overview of the theory of optimal interpolation (OI) (Gandin, 1963) and related techniques of data assimilation based on linear optimal estimation (Liebelt, 1967; Catlin, 1989; Mendel, 1995) is presented. The approach implies the use in data analysis of additional statistical information in the form of statistical moments, e.g., the mean and covariance (correlation). The a priori statistical characteristics, if available, make it possible to constrain expected errors and obtain optimal in some sense estimates of the true state from a set of observations in a given domain in space and/or time. The primary objective of OI is to provide estimates away from the observations, i.e., to fill in data voids in the domain under consideration. Additionally, OI performs smoothing suppressing the noise, i.e., the spectral components that are presumably not present in the true signal. Usually, the criterion of optimality is minimum variance of the expected errors and the whole approach may be considered constrained least squares or least squares with a priori information. Obviously, data assimilation techniques capable of incorporating any additional information are potentially superior to techniques that have no access to such information as, for example, the conventional least squares (e.g., Liebelt, 1967; Weisberg, 1985; Press et al., 1992; Mendel, 1995).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号