首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anthropogenic and climatic-induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate- and regulation-induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open-water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land-surface hydrological model to simulate hydro-ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30-day and 90-day maximum flows in the Smoky River will affect open-water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze-up flows for the 2071–2100 period showed mixed implications for the ice-jam flooding, which is essential for recharging high-elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub-basin, the sustainability of the PAD still remains uncertain.  相似文献   

2.
ABSTRACT

In cold region environments, any alteration in the hydro-climatic regime can have profound impacts on river ice processes. This paper studies the implications of hydro-climatic trends on river ice processes, particularly on the freeze-up and ice-cover breakup along the Athabasca River in Fort McMurray in western Canada, which is an area very prone to ice-jam flooding. Using a stochastic approach in a one-dimensional hydrodynamic river ice model, a relationship between overbank flow and breakup discharge is established. Furthermore, the likelihood of ice-jam flooding in the future (2041–2070 period) is assessed by forcing a hydrological model with meteorological inputs from the Canadian regional climate model driven by two atmospheric–ocean general circulation climate models. Our results show that the probability of ice-jam flooding for the town of Fort McMurray in the future will be lower, but extreme ice-jam flood events are still probable.  相似文献   

3.
Spyros Beltaos 《水文研究》2008,22(17):3252-3263
Since the late 1960s, a paucity of ice‐jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace–Athabasca Delta (PAD) region. Though major ice jams occur at breakup, antecedent conditions play a significant role in their frequency and severity. These conditions are partly defined by the mode of freezeup and the maximum thickness that is attained during the winter, shortly before the onset of spring and development of positive net heat fluxes to the ice cover. Data from hydrometric gauge records and from field surveys are utilized herein to study these conditions. It is shown that freezeup flows are considerably larger at the present time than before regulation, and may be responsible for more frequent formation of porous accumulation covers. Despite a concomitant rise in winter temperatures, solid‐ice thickness has increased since the 1960s. Using a simple ice growth model, specifically developed for the study area, it is shown that porous accumulation covers enhance winter ice growth via accelerated freezing into the porous accumulation. Coupled with a reduction in winter snowfall, this effect can not only negate, but reverse, the effect of warmer winters on ice thickness, thus explaining present conditions. The present model is also shown to be a useful prediction tool, especially for extrapolating incomplete data to the end of the winter. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

4.
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace-Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice-jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape-scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice-jam induced flooding along the Peace and Athabasca rivers. Lake-specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace-Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.  相似文献   

5.
The Mackenzie River, Canada's longest and largest river system, provides the greatest Western Hemisphere discharge to the Arctic Ocean. Recent reports of declining flows have prompted concern because (1) this influences Arctic Ocean salinity, stratification and polar ice; (2) a major tributary, the Peace River, has large hydroelectric projects, and further dams are proposed; and (3) the system includes the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie deltas. To assess hydrological trends over the past century that could reflect climate change, we analysed historic patterns of river discharges. We expanded the data series by infilling for short gaps, calculating annual discharges from early summer‐only records (typical r2 > 0.9), coordinating data from sequential hydrometric gauges (requiring r2 > 0.8) and advancing the data to 2013. For trend detection, Pearson correlation provided similar outcomes to non‐parametric Kendall's τ and Spearman's ρ tests. There was no overall pattern for annual flows of the most southerly Athabasca River (1913–2013), while the adjacent, regulated Peace River displayed increasing flows (1916–2013, p < 0.05). These rivers combine to form the Slave River, which did not display an overall trend (1917–2013). The more northerly, free‐flowing Liard River is the largest tributary and displayed increasing annual flows (1944–2013, p < 0.01, ~3.5% per decade) because of increasing winter, spring, and summer flows, and annual maximum and minimum flows also increased. Following from the tributary contributions, the Mackenzie River flows gradually increased (Fort Simpson 1939–2013, p < 0.05, ~1.5% per decade), but the interannual patterns for the Liard and other rivers were correlated with the Pacific Decadal Oscillation, complicating the pattern. This conclusion of increasing river flows to the Arctic Ocean contrasts with some prior reports, based on shorter time series. The observed flow increase is consistent with increasing discharges of the large Eurasian Arctic drainages, suggesting a common northern response to climate change. Analyses of historic trends are strengthened with lengthening records, and with the Pacific Decadal Oscillation influence, we recommend century‐long records for northern rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

River ice jams can produce extreme flood events with major social, economic and ecological impacts throughout Canada. Ice breakup and jamming processes are briefly reviewed and shown to be governed by the flow hydrograph, the thickness and strength of the winter ice cover, and the stream morphology. These factors are directly or indirectly influenced by weather conditions which implies potential impacts of climate change and variability on the severity of ice-jamming. Relevant work has to date focused on simple measures of climatic effects, such as the timing of freeze-up and breakup, and indicates trends that are consistent with concomitant changes in air temperature. More recently, it has been found that increased incidence of mid-winter breakup events and higher freshet flows in certain parts of Canada could enhance the frequency and severity of ice jams. Possible future trends under climate warming scenarios are discussed and associated impacts identified in a general manner.  相似文献   

7.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Over‐bank flooding is one of the driving forces controlling ecological integrity of riparian wetlands. Indentifying natural over‐bank flooding regime and its temporal variations is crucial for developing conservation and restoration plans and making water resources management policies for these ecosystems. Along the midstream of the Wei River in Xi'an, China lies the Jingwei riparian wetland, which was well preserved until the 1970s. Based on historical record of hydrological and morphological data of the Wei River from 1951 to 2000, we analysed temporal variations of over‐bank flooding frequency, duration, and timing in this paper. The natural annual over‐bank flooding regime was identified as having an occurrence frequency of 2·2 times a year and average duration of 5·3 days; these flooding events typically occur between June and September with occasional occurrence in late spring and late autumn. Over‐bank flooding occurrence frequency and duration decreased significantly during the 1990s, seasonal events of over‐bank floods were changed through reduced flooding frequency during summer and disappearing flooding events in late spring and late autumn. Further investigations showed that reduced discharge in the Wei River was the principal cause for these changes in over‐bank flooding dynamics. Our analysis also showed that decreased discharge of the Wei River during the 1990s was attributed near equally to disturbances from human activities and decreased regional precipitation. Results from this study may help reestablish natural over‐bank flooding dynamics in order to ensure successful restoration of Jingwei riparian wetland. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Three large rivers have their headwaters in the Patagonian Ice Fields (PIFs) in the Andes Mountains, the largest mid-latitude ice masses on Earth: Santa Cruz, Baker and Pascua. They are the last large free flowing rivers in Patagonia, but plans are advanced for building dams for hydroelectric power generation. The three PIF rivers, with a discharge dominated by ice melt, share a common, unique hydrograph compared to that of the other eight large rivers in the region: a distinct seasonal cycle, and an extremely stable discharge, with much lower variability than other rivers. In this study we present the first extensive survey of habitats and benthic macroinvertebrates in the least studied system, the Santa Cruz River. We assess how much of the natural capital provided and sustained by benthic invertebrates are expected to be lost by flooding and discuss how dams would affect riverine habitat and biota. In the Santa Cruz River, we conducted an intensive field survey during September 2010; a total of 52 sites located at regular 6 km intervals were sampled along the 310 river-km for macroinvertebrates and seventeen habitat variables. Although some habitat structure is apparent at the local scale, the Santa Cruz River could be described as very homogeneous. Macroinvertebrate density and the richness (38 genera) found in the Santa Cruz River resulted to be one of the lowest in comparison with 42 other Patagonian rivers. Albeit weak, the structure of the macroinvertebrates assemblages was successfully described by a reduced set of variables. The reduced flow variation and the lack of bed scouring flows have a direct and negative effect on the heterogeneity of riverbeds and banks. The high turbidity of the Santa Cruz River may also contribute to shorter food webs, by affecting autotrophic production, general trophic structure, and overall macroinvertebrate productivity and diversity. Dams will obliterate 51% of the lotic environment, including the most productive sections of the river according to our macroinvertebrate data. Since Santa Cruz River has a naturally homogeneous flow cycle, dams may provide more variable flows and more diverse habitat. Our data provide critically valuable baseline information to understand the effects of dams on the unique set of glacial driven large rivers of Patagonia.  相似文献   

10.
Variations in the characteristics of ice regime of rivers in the Northern Dvina basin over the last 125 years are analyzed. For the Northern Dvina lower course, potential changes in the dates of the appearance of floating ice and the breakup due to expected changes in the air temperature and the rate of streamflow in rivers are assessed. Special attention is paid to the factors that affect the formation of ice jams and their spatial and temporal variability. The prognostic relationship for the maximum ice-jam stage in the Sukhona River near the town of Velikii Ustyug is presented as an example.  相似文献   

11.
River ice break‐up is known to have important morphological, ecological and socio‐economic effects on cold‐regions river environments. One of the most persistent effects of the spring break‐up period is the occurrence of high‐water events. A return‐period assessment of maximum annual nominal water depths occurring during the spring break‐up and open‐water season at 28 Water Survey of Canada hydrometric sites over the 1913–2002 time period in the Mackenzie River basin is presented. For the return periods assessed, 13 (14) stations are dominated by peak events occurring during the spring break‐up (open‐water) season. One location is determined to have a mixed signal. A regime classification is proposed to separate ice‐ and open‐water dominated systems. As part of the regime classification procedure, specific characteristics of return‐period patterns including alignment, and difference between the 2 and 10‐year events are used to identify regime types. A dimensionless stage‐discharge plot allows for a contrast of the relative magnitudes of flows required to generate maximum nominal water‐depth events in the different regimes. At sites where discharge during the spring break‐up is approximately one‐quarter or greater than the magnitude of the peak annual discharge, nominal water depths can be expected to exceed those occurring during the peak annual discharge event. Several physical factors (location, basin area, stream order, gradient, river orientation, and climate) are considered to explain the differing regimes and discussed relative to the major sub‐regions of the MRB. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   

12.
Lupachev  Yu. V. 《Water Resources》2001,28(2):220-223
The dynamic type of ice drift development is found to dominate in the mouth zones of the Northern Dvina and Pechora rivers in the period of spring ice break. The ice drift is accompanied by the formation of ice jams in the mouth, the most common among them being jams of arched and wedge type. The jams are a common cause of flooding of towns and settlements in the region. The particular features of ice breaking in the mouths of northern rivers are discussed along with the regularities of ice jam formation during ice drift. The formation of jams is shown to be associated with stable retardation of ice in the sites of river channels that have specific morphological characteristics or to be caused by drifting ice mass running into solid ice fields in lower parts of river delta arms.  相似文献   

13.
Despite the presence of numerous dams in Québec, no study has yet been devoted to their impacts on flood levels. To compensate for this deficiency, we have compared the impacts of dams on the five characteristics (magnitude and its interannual variability, timing and its interannual variability, and asymmetry) of the maximum annual flows between natural rivers and regulated rivers by means of several statistical approaches (analysis of variance, chi‐square test, nonparametric tests, etc.). In the course of this study, we analysed 88 stations on pristine rivers and 60 stations on regulated rivers. The latter group was subdivided into three regulated hydrologic regimes, i.e. inversed flow regimes (25 stations), homogenization flow regimes (15 stations) and natural‐type flow regimes (20 stations). The following observations emerge from this study. (1) In inversed and homogenization flow regimes, generally associated with reservoirs, all the flow characteristics are modified. These modifications notably entrain a decrease in magnitude, a significant reduction in the frequency of the maximum annual spring flows when the snow is melting and an increase in skewness of the distribution and interannual variability of the magnitude and dates of occurrence of the annual maximum flows. We also observed the disappearance of most flows with a recurrence of over 10 years. All these changes particularly affect watersheds larger than 10 000 km2. (2) In natural‐type flow regimes, often associated with run‐of‐river dams, very few changes were observed compared with pristine rivers. These changes primarily affected watersheds smaller than 1000 km2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Turutin  B. F.  Matyushenko  A. I. 《Water Resources》2001,28(2):224-228
The effect of different factors on the duration of spring ice jams and the flood water level in the Siberian rivers is considered. Observational data on the frequency of ice jams of different probabilities within some reaches of the Yenisei River are presented.  相似文献   

16.
《水文科学杂志》2013,58(3):450-464
Abstract

On the basis of analysing the genesis, recurrence and severity of flood hazards, a regional flood hazard analysis of the southern area of East Siberia has been carried out. The greatest flood hazard corresponds to the relatively densely populated area of southern East Siberia: the Upper Yenisei, Angara and Upper Lena river basins and the Lake Baikal watershed. Typically, the most hazardous floods include those caused by surges produced by damage to the dams of the Angara—Yenisei hydropower cascade; flash floods are also an extreme hazard. Maximum runoff factors were used to delineate regions within the study area, and the hazard severity was scored for the Irkutsk region. An inventory of the ice-dam and ice-jam areas, as well as of the streamflow sites with maximum runoff of different origins predominating in the Angara and Lena river basins, showed that the study area includes 78 and 19 ice-dam and ice-jam locations, respectively. A high recurrence of ice dams and ice jams is also observed on other rivers.  相似文献   

17.
Many west coastal and northern Norwegian rivers run through deep, confined valleys with permeable layers of glacial and alluvial deposits. Groundwater flows through these permeable layers and enter lakes and rivers as underwater seepage and springs. Groundwater inflow to inland Norwegian rivers may constitute 40–100% of total water discharge during low flow periods in late summer and winter. Juvenile salmonids may take advantage of groundwater upwellings and actively seek out such patches. In regulated rivers groundwater influx may create refuges during low flow or hydropeaking episodes. The importance of groundwater for salmon redd site selection and egg survival is also clear, although less known and documented in regulated rivers.Eggs of Atlantic salmon (Salmo salar) are deposited in redds in river bed gravels lacking fine sediments and with high oxygen levels. Egg development is therefore dependent on the interaction of a number of environmental factors such as groundwater influx, oxygen and temperature. Atlantic salmon in the regulated River Suldalslågen, Western Norway, spawn relatively late compared to other Norwegian rivers, with a peak in early January. Newly emerged fry are found from the end of May to the beginning of June, i.e. “swim up” one month earlier than expected using models for egg and alevin development and river water temperatures. The most plausible explanation is that groundwater has a higher and more stable temperature than surface river water. In field experiments, fertilized salmon eggs were placed in boxes close to natural spawning redds in the river bed at sites influenced and those not influenced by groundwater. A difference of up to 40 days in 50% hatching was found, and “swim up” occurred at the end of May in boxes influenced by groundwater.Preliminary studies have revealed that groundwater also plays an important role in survival of salmon eggs in the River Suldalslågen when dewatered in winter. Eggs placed in boxes in groundwater seepage areas during winter in the dewatered river bed survived even when covered by ice and snow. The survival from fertilization until 30 April, one month before hatching, was 91%, the same survival as found for eggs placed in boxes in the wetted river bed. However, mortality from fertilization to hatching was higher compared to the eggs placed in wetted river bed, 57 and 91% respectively.Groundwater creates a horizontal and vertical mosaic of temperatures in spawning redd areas leading to potentially greater variation in spawning sites, time of hatching and “swim up”. This is likely to increase egg survival during low flow periods in regulated rivers. In conclusion, the interaction between groundwater and surface river water should therefore be considered when managing fish populations in regulated rivers.  相似文献   

18.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   

19.
Abstract

River flow conditions in many watersheds of Iceland are particularly disturbed during winter by the formation, drifting and accumulation of river ice, whose impact on water encroachment and extent of inundations is not reflected in the discharge records. It is therefore necessary to use river discharge with great caution when assessing the magnitude of past inundations in Iceland, and to give attention to other flood magnitude parameters. A GIS-based methodology is presented that focuses on inundation extent as an alternative parameter for the assessment and ranking of the magnitude of past flooding events in the Ölfusá-Hvítá basin, known as one of the most dangerous flood-prone river complexes in Iceland. Relying ultimately on a macro-scale grid, the method enabled the reconstruction of the extent of inundations, the delineation of the flood plain, and, finally, some estimation of the likelihood of flooding of exposed areas that include marine submergences and river floods for both open water and ice conditions.

Citation Pagneux, E., Gísladóttir, G. & Snorrason, Á. (2010) Inundation extent as a key parameter for assessing the magnitude and return period of flooding events in southern Iceland. Hydrol. Sci. J. 55(5), 704–716.  相似文献   

20.
Human alteration of large rivers is commonplace, often resulting in significant changes in flow characteristics. We used a time series approach to examine daily mean flow data from locations throughout the mainstem Missouri River. Data from a pre-alteration period (1925-1948) were compared with a post-alteration period (1967-1996), with separate analyses conducted using either data from the entire year or restricted to the spring fish spawning period (1 April-30 June). Daily mean flows were significantly higher during the post-alteration period at all locations. Flow variability was markedly reduced during the post-alteration period as a probable result of flow regulation and climatological shifts. Daily mean flow during the spring fish spawning period was significantly lower during the post-alteration period at the most highly altered locations in the middle portion of the river, but unchanged at the least altered locations in the upper and lower port ions of the river. Our data also corroborate other analyses, using alternate statistical approaches, that suggest similar changes to the Missouri River system. Our results suggest human alterations on the Missouri River, particularly in the middle portion most strongly affected by impoundments and channelization, have resulted in changes to the natural flow regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号