首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Climate change threatens water resources in snowmelt‐dependent regions by altering the fraction of snow and rain and spurring an earlier snowmelt season. The bulk of hydrological research has focused on forecasting response in streamflow volumes and timing to a shrinking snowpack; however, the degree to which subsurface storage offsets the loss of snow storage in various alpine geologic settings, i.e. the hydrogeologic buffering capacity, is still largely unknown. We address this research need by assessing the affects of climate change on storage and runoff generation for two distinct hydrogeologic settings present in alpine systems: a low storage granitic and a greater storage volcanic hillslope. We use a physically based integrated hydrologic model fully coupled to a land surface model to run a base scenario and then three progressive warming scenarios, and account for the shifts in each component of the water budget. For hillslopes with greater water retention, the larger storage volcanic hillslope buffered streamflow volumes and timing, but at the cost of greater reductions in groundwater storage relative to the low storage granite hillslope. We found that the results were highly sensitive to the unsaturated zone retention parameters, which in the case of alpine systems can be a mix of matrix or fracture flow. The presence of fractures and thus less retention in the unsaturated zone significantly decreased the reduction in recharge and runoff for the volcanic hillslope in climate warming scenarios. This approach highlights the importance of incorporating physically based subsurface flow in to alpine hydrology models, and our findings provide ways forward to arrive at a conceptual model that is both consistent with geology and hydrologic principles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

3.
In the cold semiarid Canadian prairies, groundwater recharge is focussed under numerous topographic depressions, in which snowmelt runoff converges. Agricultural land uses on the uplands surrounding the depressions affect snow accumulation, snowmelt infiltration, evapotranspiration (ET) and soil moisture dynamics, thereby influencing snowmelt runoff and depression-focussed recharge. The objective of this study is to compare the differences in hydrological processes under two common land uses in the Canadian prairies, namely grazed grass and annual crop, and examine how they affect groundwater recharge. A short-term (3 years) paired catchment study was used for detailed observation of hydrological processes in two depressions, supplemented by a longer-term (17 years) data set covering a larger scale to quantify the differences in snowmelt runoff between the two land uses. Compared to the grazed grassland, the cropland had a shorter and more intense period of ET, and root water uptake restricted to the shallower (top 0–80 cm) soil zone. The amount of snowmelt runoff was greater in the grazed grassland primarily due to a higher amount of snow accumulation, which was dictated by differences in topography. This finding was contrary to previous studies in the Canadian prairies that indicated substantially smaller snowmelt runoff in ungrazed grassland, but was consistent with the larger-scale remote sensing results, which showed only a marginal difference between grazed grasslands and croplands. Groundwater recharge rates were estimated using the chloride mass balance method for the present condition using “modern” pore water containing tritium. The rates were similar between the grazed grassland and croplands, implying similarity in snowmelt runoff characteristics. These results suggest that groundwater recharge will continue to be focussed under depressions in the future, though the amount and seasonality of recharge may be influenced by warmer winters.  相似文献   

4.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

6.
The seasonal snowmelt period is a critical component of the hydrologic cycle for many mountainous areas. Changes in the timing and rate of snowmelt as a result of physical hydrologic flow paths, such as longitudinal intra-snowpack flow paths, can have strong implications on the partitioning of meltwater amongst streamflow, groundwater recharge, and soil moisture storage. However, intra-snowpack flow paths are highly spatially and temporally variable and thus difficult to observe. This study utilizes new methods to non-destructively observe spatio-temporal changes in the liquid water content of snow in combination with plot experiments to address the research question: What is the scale of influence that intra-snowpack flow paths have on the downslope movement of liquid water during snowmelt across an elevational gradient? This research took place in northern Colorado with study plots spanning from the rain-snow transition zone up to the high alpine. Results indicate an increasing scale of influence from intra-snowpack flow paths with elevation, showing higher hillslope connectivity producing larger intra-snowpack contributing areas for meltwater accumulation, quantified as the upslope contributing area required to produce observed changes in liquid water content from melt rate estimates. The total effective intra-snowpack contributing area of accumulating liquid water was found to be 17, 6, and 0 m2 for the above tree line, near tree line, and below tree line plots, respectively. Dye tracer experiments show capillary and permeability barriers result in increased number and thickness of intra-snowpack flow paths at higher elevations. We additionally utilized aerial photogrammetry in combination with ground penetrating radar surveys to investigate the role of this hydrologic process at the small watershed scale. Results here indicate that intra-snowpack flow paths have influence beyond the plot scale, impacting the storage and transmission of liquid water within the snowpack at the small watershed scale.  相似文献   

7.
At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one‐third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single‐ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows. Copyright ©2002 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

8.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   

9.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

11.
Quantifying snowmelt‐derived fluxes at the watershed scale within hillslope environments is critical for investigating local meadow scale groundwater dynamics in high elevation riparian ecosystems. In this article, we investigate the impact of snowmelt‐derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show water levels within the meadow are controlled by a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage. Observed water level fluctuations at the boundaries of the meadow show the hydrologic connection and subsequent disconnection between the hillslope and meadow aquifers. Timing of groundwater flux entering the meadow as a result of spring snowmelt can vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying this temporal and spatial variability in flux entering the meadow is critical for simulating changes in water levels within the meadow. Model results can vary significantly based on the temporal and spatial scales at which watershed processes are linked to local processes within the meadow causing errors when boundary fluxes are lumped in time or space. Without a clear understanding of the surrounding hillslope hydrology, it is difficult to simulate groundwater dynamics within high elevation riparian ecosystems with the accuracy necessary for understanding ecosystem response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil–meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil–meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M‐PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose‐zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M‐PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M‐PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M‐PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
As Andean glaciers rapidly retreat due to climate change, the balance of groundwater and glacial meltwater contributions to stream discharge in tropical, proglacial watersheds will change, potentially increasing vulnerability of water resources. The Shullcas River Watershed, near Huancayo, Peru, is fed only partly by the rapidly receding Huaytapallana glaciers (<20% of dry season flow). To potentially increase recharge and therefore increase groundwater derived baseflow, the government and not‐for‐profit organizations have installed trenches along large swaths of hillslope in the Shullcas Watershed. Our study focuses on a nonglacierized subcatchment of the Shullcas River Watershed and has 2 objectives: (a) create a model of the Shullcas groundwater system and assess the controls on stream discharge and (b) investigate the impact of the infiltration trenches on recharge and baseflow. We first collected hydrologic data from the field including a year‐long hydrograph (2015–2016), meteorological data (2011–2016), and infiltration measurements. We use a recharge model to evaluate the impact of trenched hillslopes on infiltration and runoff processes. Finally, we use a 3‐dimensional groundwater model, calibrated to the measured dry season baseflow, to determine the impact of trenching on the catchment. Simulations show that trenched hillslopes receive approximately 3.5% more recharge, relative to precipitation, compared with unaltered hillslopes. The groundwater model indicates that because the groundwater flow system is fast and shallow, incorporating trenched hillslopes (~2% of study subcatchment area) only slightly increases baseflow in the dry season. Furthermore, the location of trenching is an important consideration: Trenching higher in the catchment (further from the river) and in flatter terrain provides more baseflow during the dry season. The results of this study may have important implications for Andean landscape management and water resources.  相似文献   

17.
To determine how soil frost changes flowpaths of runoff water along a hillslope, a transect consisting of four soil profiles directed towards a small stream in a mature forest stand was investigated at Svartberget, near Vindeln in northern Sweden. Soil temperature, unfrozen water content, groundwater level and snow depth were investigated along the transect, which started at the riparian peat, and extended 30 m upslope into mineral soils. The two, more organic‐rich profiles closest to the stream had higher water retention and wetter autumn conditions than the sandy mineral soils further upslope. The organic content of the soil influenced the variation in frost along the transect. The first winter (1995–96) had abnormally low snow precipitation, which gave a deep frost down to 40–80 cm, whereas the two following winters had frost depths of 5–20 cm. During winter 1995–96, the two organic profiles close to the stream had a shallower frost depth than the mineral soil profile higher upslope, but a considerably larger amount of frozen water. The fraction of water that did not freeze despite several minus degrees in the soil was 5–7 vol.% in the mineral soil and 10–15 vol.% in the organic soil. From the measurements there were no signs of perched water tables during any of the three snowmelt periods, which would have been strong evidence for changed water flowpaths due to soil frost. When shallow soil layers became saturated during snowmelt, especially in 1997 and 1998, it was because of rising groundwater levels. Several rain on frozen ground events during spring 1996 resulted in little runoff, since most of the rain either froze in the soil or filled up the soil water storage. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号