首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prehistoric rock art sites are endangered despite conservation efforts. The lack of scientific documentation regarding weathering agents affecting rock art and the absence of specific diagnostic protocols hinder the development of conservation strategies. The aim of this research was to investigate active deterioration processes in a granite petroglyph site located in Mougás (Galicia, NW Spain) by characterizing the granite, conducting a geotechnical study of the outcrop and describing and analysing the main weathering processes. Two main deterioration factors were identified. First, water favours block disjunction at the massif scale and causes pitting and surface erosion at the millimetre scale that affects the readability of the engravings. Second, high temperatures associated with wildfires cause mineral transformations that increase the susceptibility of the rock to weathering. Identifying deterioration factors is a first step in developing appropriate preventive conservation measures, which should aim to reduce rock contact time with water (technically affordable in the short term) and to reduce the probability of wildfire occurrence (technically more complex and possibly with longer‐term results). Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
By the experiment, it is confirmed that water-marble rock system shows obviously chemical anomalous behaviors: the relevant minerals which formed marble rock are resolved fast, water becomes alkaline, meanwhile H2 emission appears under action of ultrasound; based on rock identification by microscope and chemical analysis of water and rock, the mechanism of above chemical reaction is analyzed and discussed. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15 498–507, 1993. This study was supported by the Chinese Joint Seismological Science Foundation.  相似文献   

3.
Formation of extensive phreatic caves in eogenetic karst aquifers is widely believed to require mixing of fresh and saltwater. Extensive phreatic caves also occur, however, in eogenetic karst aquifers where fresh and saltwater do not mix, for example in the upper Floridan aquifer. These caves are thought to have formed in their modern settings by dissolution from sinking streams or by convergence of groundwater flow paths on springs. Alternatively, these caves have been hypothesized to have formed at lower water tables during sea level low‐stands. These hypotheses have not previously been tested against one another. Analyzing morphological data and water chemistry from caves in the Suwannee River Basin in north‐central Florida and water chemistry from wells in the central Florida carbonate platform indicates that phreatic caves within the Suwannee River Basin most likely formed at lower water tables during lower sea levels. Consideration of the hydrological and geochemical constraints posed by the upper Floridan aquifer leads to the conclusion that cave formation was most likely driven by dissolution of vadose CO2 gas into the groundwater. Sea level rise and a wetter climate during the mid‐Holocene lifted the water table above the elevation of the caves and placed the caves tens of meters below the modern water table. When rising water tables reached the land surface, surface streams formed. Incision of surface streams breached the pre‐existing caves to form modern springs, which provide access to the phreatic caves. Phreatic caves in the Suwannee River Basin are thus relict and have no causal relationship with modern surficial drainage systems. Neither mixing dissolution nor sinking streams are necessary to form laterally extensive phreatic caves in eogenetic karst aquifers. Dissolution at water tables, potentially driven by vadose CO2 gas, offers an underappreciated mechanism to form cavernous porosity in eogenetic carbonate rocks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Water is an important weathering factor on rock discontinuities and in rock mass mechanical behaviour because of its chemical features such as temperature, pH or salinity which make it a “good” candidate to rock degradation. Furthermore the increase of rainfall frequency or intensity highlights some problems on the rock slope stability analysis. This study aims to evaluate the effect of water flow on the rock slope stability and it is performed at two space scales: in situ scale and laboratory (micro scale and macro scale). It shows how water induces degradation at multi-scale (surface roughness and matrix) and thus may decrease the stability of the discontinuous rock mass. It has two main components: the effect of water-solid chemical mechanisms and the analysis of the mechanical response of the discontinuity modified by the water alteration.  相似文献   

5.
淮北临涣矿采煤沉陷区不同水体水化学特征及其影响因素   总被引:3,自引:0,他引:3  
为研究淮北临涣矿采煤沉陷区不同水体的补给水源及溶质来源,在现场调查的基础上,系统采集丰水期、平水期、枯水期沉陷区积水、地表河水和浅层地下水样进行测试分析,采用Piper三线图、Gibbs图和因子分析方法,对不同水体水化学特征及其影响因素进行讨论.结果表明:地表水水体总溶解性固体(TDS)质量浓度表现为枯水期丰水期平水期,浅层地下水表现为枯水期平水期丰水期,地表水TDS质量浓度明显高于浅层地下水.地表水中主要阴阳离子为Na~+、Cl~-和SO_4~(2-),水化学类型主要为SO_4~(2-)-Cl~--Na~+型;浅层地下水离子以HCO_3~-、Ca~(2+)和Mg~(2+)为主,表现为HCO_3~--Ca~(2+)-Mg~(2+)型.结合Gibbs图和因子分析可知,地表水受蒸发作用、地表径流以及采煤活动等因素影响,浅层地下水在一定程度上体现出大气降水和地表水补给的特点,受岩石风化作用影响较为明显.  相似文献   

6.
This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.  相似文献   

7.
Springs are complex and taxa rich ecosystems. Diatom assemblages have received very little attention in spring ecosystems in Iran; hence, the diatom assemblage in three selected springs in northeast Iran, were investigated using multivariate analysis together with hydro chemical measures. For this purpose, water and diatom samples collected during four seasons of 2019. Hydrochemistry results revealed that water-rock interaction is the most important factor in changing the water chemistry of studied springs and their waters produced from carbonate reservoir rocks (mainly calcite). As a result, Ca-HCO3 is predominate water type in all three springs. In this study, 75 diatom taxa identified, from which 55 were included in the analysis. Cluster analysis based on diatoms relative abundance, clustered samples in two major groups and third small group. Results of the indicator species analysis for groups and DCA analysis were in the absolute conformity. Results revealed that the diatom assemblage dominated by combination of early colonizer taxa, spring indicator taxa and cosmopolitan taxa; most of them also reported from different spring types. The results also showed that the spring’s diatom composition influence by size and morphology of the springs.  相似文献   

8.
溶蚀孔洞在碳酸盐岩储层中是重要的流体储集空间,研究成像测井(FMI)图像孔洞连通域标记及信息定量拾取很有意义.全井眼微电阻率成像测井(FMI)经数据处理后可得到全井壁高分辨率的彩色图像,经图像灰度化、中值滤波处理后,通过阈值分割得到能够反映井壁溶蚀孔洞特征的二值图像,孔洞表现为黑色暗斑.基于等价对处理的图像连通域标记算法具有快速、不重复标记的优点,利用该算法,可准确地从二值图像中标记溶蚀孔洞连通域,进而可对每个连通域进行目标信息拾取,包括孔洞尺寸、连通域面积、圆度等.利用反映溶蚀孔洞发育程度的面孔率曲线对图像进行分层,在此基础上可拾取每一层段溶蚀孔洞面孔率、分选系数及溶洞密度值的分布等非均质信息,能够定量地评价溶蚀孔洞发育、非均质性强的碳酸盐岩储层,也是FMI图像应用于岩石孔洞结构信息定量表征新的尝试.  相似文献   

9.
以钟祥马岭井历年水温观测资料为研究对象,发现2套SZW-1A型数字水温仪记录的数据曲线自2016年7月以来均具有“V”型异常特征,从观测系统、地震、降雨等因素进行分析,排查干扰因素,并分析水温变化的可能机理,认为现该异常应为降雨干扰所致。干扰机理如下:降雨量累积值达40 mm以上,降雨迅速补充地下水,浅层冷水经井段223—246 m处存在的岩石裂隙、断层、溶洞等渗入井孔,造成静水位迅速上升,井水温度随之下降,上下层冷—热水之间的热传导使得位于井孔深部的水温下降;降雨结束,地表水渗入量减少,水温逐渐恢复正常。  相似文献   

10.
Multivariate statistical techniques, cluster and factor analyses were applied on the Amman/Wadi Sir groundwater chemistry, Yarmouk River basin, north Jordan. The main objective was to investigate the main processes affecting the groundwater chemical quality and its evolution. The k‐means cluster analysis yields three groups with distinct ionic concentrations. Cluster 1 comprises the vast majority of the sampled wells, and the water that belongs to this cluster can be classified as freshwater. Cluster 2 comprises only 2% of the sampled wells; it has the highest ionic concentration. The water of this cluster can be classified as brackish water. Cluster 3 involves 23% of the sampled wells, and it has total ionic concentration intermediate to that of clusters 1 and 2. Factor analysis yields a three‐factor model, which explains 76.77% of the groundwater quality variation. Factor 1 ‘salinity factor’ involves EC, Na+, Cl, SO4‐2, K+ and Mg+2 and reflects groundwater salinization because of overpumping. Factor 2 ‘hardness factor’ includes Ca+2, HCO3 and the pH value and signifies soil–water/rock interaction. Factor 3 ‘nitrate factor’ involves only NO3 and points to groundwater contamination because of human activities, mainly untreated wastewater, and crops and animal cultivation in the unconfined portion of the aquifer. Factors 1 and 3 can be described as human‐induced factors, whereas factor 2 can be described as geogenic factor. Factors' scores were mapped to deduce the controlling processes on the groundwater chemistry. Stable isotope composition of 18O and 2H has revealed that the groundwater is a mixture of two water types. The radioactive isotopes tritium and 14 C were used to evaluate present day recharge to the aquifer and to estimate the groundwater age, respectively. Present day recharge to the groundwater is taking place in the unconfined portion of the aquifer as it is indicated by the measurable tritium content and low groundwater age. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2 concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2 ]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and this intensive cementation is responsible for decreased porosity and permeability. In the CaCl2 water at the greater depth, pore water is un-der-saturated with respect to calcite, resulting in dissolution of calcite cements, as consistent with microscopic dissolution features of the samples from this depth interval. Calcite dissolution results in formation of high secondary porosity and permeability, and is responsible for the superior quality of the reservoir rocks at this depth interval. These results illustrate the importance of pore water chemis-try in controlling carbonate precipitation/dissolution, which in turn controls porosity and permeability of oil and gas reservoir rocks in major sedimentary basins.  相似文献   

12.
Growing evidence suggests microbial respiration of dissolved organic carbon (DOC) may be a principal driver of subsurface dissolution and cave formation in eogenetic carbonate rock. Analyses of samples of vadose zone gasses, and geochemical and hydrological data collected from shallow, uncased wells on San Salvador Island, Bahamas, suggest tidally varying water tables may help fuel microbial respiration and dissolution through oxygenation. Respiration of soil organic carbon transported to water tables generates dysaerobic to anaerobic groundwater, limiting aerobic microbial processes. Positive correlations of carbon dioxide (CO2), radon-222 (222Rn) and water table elevation indicate, however, that tidal pumping of water tables pulls atmospheric air that is rich in oxygen, and low in CO2 and 222Rn, into contact with the tidal capillary fringe during falling tides. Ratios of CO2 and O2 in vadose gas relative to the atmosphere indicate this atmospheric oxygen fuels respiration within newly-exposed, wetted bedrock. Deficits of expected CO2 relative to O2 concentrations indicate some respired CO2 is likely removed by carbonate mineral dissolution. Tidal pumping also appears capable of transferring oxygen to the freshwater lens, where it could also contribute to respiration and dissolution; dissolved oxygen concentrations at the water table are at least 5% saturated and decline to anaerobic conditions 1–2 m below. Our results demonstrate how tidal pumping of air to vadose zones can drive mineral dissolution reactions that are focused near water tables and may contribute to the formation of laterally continuous vuggy horizons and potentially caves. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
廖丽霞  陈琳  张锦福 《地震》2006,26(2):95-103
通过对福建流体台网运行现状的分析, 选择了4个分别代表温泉、 热水井和冷水井, 且这些观测点位于构造断裂带及构造断裂带交汇处, 含水岩性为中酸性侵入岩和火山岩, 水点类型为基岩裂隙泉和自流井。 以资料连续性较好的模拟观测点作为研究对象, 分析这些观测点对1990年以来台湾历次7级以上地震的前兆异常对应特征, 讨论了映震能力及其有效映震因素。 结果表明, 福建流体台网前兆异常对台湾7级以上地震有较好的映震效能; 观测点的映震能力在一定程度上取决于水点所处的构造位置; 映震的灵敏度在一定程度上取决于水点的水文地球化学背景条件。  相似文献   

14.
柴达木盆地是我国和世界重要的钾盐产地,目前对地表浅层盐湖钾盐研究颇多,但对深部碎屑孔隙钾盐研究较少.本文以昆特依凹陷为例,总结柴达木盆地钾盐成矿的时空变化规律,通过对该区地质、水文、古环境及卤水储层特征等分析建立“双层钾盐”成矿模式:上层为赋存在Q p2-h盐湖相化学盐类晶体裂隙间的晶间卤水,下层是Q p1冲洪积相砂砾孔隙卤水.采用聚类分析、特征系数、介稳相图、piper三线图及氢氧同位素等数理、地球化学手段分析上、下层卤水离子含量,探讨“双层钾盐”模式成因和上、下层卤水的内在联系.研究认为,昆特依凹陷内“双层钾盐”赋存卤水均为陆相沉积环境中的盐岩溶滤水,其中上层晶间卤水更多表现为盐岩溶解,但也不乏溶滤作用,下层砂砾孔隙卤水则着重表现为石盐的溶解;上层晶间卤水表现出下层砂砾孔隙卤水深度演化的特征,下层砂砾孔隙卤水具有对深部古盐岩层及上层晶间层的继承性;昆特依凹陷周边的新近纪背斜构造区油田水在成因上也与“双层钾盐”卤水密切相关.  相似文献   

15.
Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high‐resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave). We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations. We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone than mixing of vadose and phreatic water. We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation because mixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Chemical studies have been carried out on a number of water wells from the Dibdiba Formation northeast of Kuwait. Water salinity of this formation ranges between 3,300 mg/l to 7,000 mg/l, increasing with depth. The water entrapped in Dibdiba Formation is mainly sodium chloride type which can be differentiated into three different groups according to the ranges of concentration of the main cations and anions. These groups are: (3331113) sodium chloride water type in which Cl > Na, group (3333113) sodium chloride water type in which Na > Cl. In both groups the sequence of dominant cations is Na > Ca > Mg. Group (3333111) sodium chloride water type has Na > Cl and the sequence of dominant cations is Na > Mg > Ca. Chemical ratios of Ca/Mg, Na/Cl, and C1/HCO3 were worked out for Dibdiba ground water. The ratio of Ca/Mg Dibdiba Formation ranges from 0.4 to 8.58, the ratio of Na/Cl ranges between 0.98 to 1.33, and the ratio of C1/HCO3 is 232. A plot of chemical analysis on a trilinear diagram shows that Dibdiba Formation ground-water chemical properties are dominated by alkalies (Na > Ca) and strong acid (Cl > SO4). Water chemistry may reflect the history of the flow path, indicating regional flow as shown by increasing Na+, Cl-, SO4 and where Ca+, Mg+ achieve equilibrium.  相似文献   

17.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

18.
Mixing dissolution, a process whereby mixtures of two waters with different chemical compositions drive undersaturation with respect to carbonate minerals, is commonly considered to form cavernous macroporosity (e.g. flank margin caves and banana holes) in eogenetic karst aquifers. On small islands, macroporosity commonly originates when focused dissolution forms globular chambers lacking entrances to the surface, suggesting that dissolution processes are decoupled from surface hydrology. Mixing dissolution has been thought to be the primary dissolution process because meteoric water would equilibrate rapidly with calcium carbonate as it infiltrates through matrix porosity and because pCO2 was assumed to be homogeneously distributed within the phreatic zone. Here, we report data from two abandoned well fields in an eogenetic karst aquifer on San Salvador Island, Bahamas, that demonstrate pCO2 in the phreatic zone is distributed heterogeneously. The pCO2 varied from less than log ?2.0 to more than log ?1.0 atm over distances of less than 30 m, generating dissolution in the subsurface where water flows from regions of low to high pCO2 and cementation where water flows from regions of high to low pCO2. Using simple geochemical models, we show dissolution caused by heterogeneously distributed pCO2 can dissolve 2.5 to 10 times more calcite than the maximum amount possible by mixing of freshwater and seawater. Dissolution resulting from spatial variability in pCO2 forms isolated, globular chambers lacking initial entrances to the surface, a morphology that is characteristic of flank margin caves and banana holes, both of which have entrances that form by erosion or collapse after cave formation. Our results indicate that heterogeneous pCO2, rather than mixing dissolution, may be the dominant mechanism for observed spatial distribution of dissolution, cementation and macroporosity generation in eogenetic karst aquifers and for landscape development in these settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
利用核磁共振成像技术、图像处理技术进行了岩心分析方法研究。阐述了核磁共振成像原理及图像处理软件功能。通过岩心测试分析计算方法研究,建立了核磁共振成像测试分析计算岩心内部结构,岩心孔隙度参数和孔隙度分布图像、渗透率分布图像,可动流体百分数图像,油水识别图像方法。表明:核磁共振图像不仅能够给出岩心总孔隙度,渗透率物性参数,而且能够给出岩心孔隙度,渗透率分布信息。根据可动流体百分数图像,可观察到可动流体在岩心中的分布情况。核磁共振成像油水识别方法,给出了油水在岩心中的分布情况,并可计算油、水饱和度。建立的岩心磁共振成像分析研究方法,可应用于油田储层评价,开发试验以及提高采收率研究。  相似文献   

20.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号