首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
青藏高原热状况对南亚高压活动的影响   总被引:4,自引:1,他引:4  
任广成 《大气科学》1991,15(1):28-32
本文分析了青藏高原下垫面与高原上空热状况变化的异同及其二者与南亚高压的关系。指出青藏高原下垫面热状况与高原上空热状况年际变化的一致性及月际变化的差异——青藏高原下垫面从2月就开始大幅度增温,而高原上空5月才开始突发性增温。高原下垫面降温幅度最大的月份出现在11月,高原上空则出现在10月。分析还指出,青藏高原下垫面热状况与南亚高压南北振荡,青藏高原上空热状况与南亚高压东西振荡有密切关系。并且前期青藏高原上空热状况较高原下垫面热状况对南亚高压的预报更具有指示意义。  相似文献   

2.
辽宁春季透雨的环流背景及与海温相关分析   总被引:2,自引:0,他引:2  
利用1961—2008年4—5月辽宁14个站逐日降水资料,分析了春季第一场透雨出现日期与500 hPa的环流背景及海温的相关关系。结果表明:中国辽宁春季透雨出现日期与前一年9—11月500 hPa高度场有较好的相关性,与北半球同年4月500 hPa环流年代际变化有较好的对应关系;透雨出现日期与北太平洋前期海温呈显著的负相关,当北太平洋地区前期海温偏高时,中国辽宁春季透雨出现日期偏早;当北太平洋地区前期海温偏低时,中国辽宁春季透雨出现日期偏迟。  相似文献   

3.
《干旱气象》2004,22(4):93-94
论文青藏高原清洁地区近地面层臭氧的特征分析 1 - 1甘肃地质灾害气象等级预报研究 1 - 8宁夏中北部地区沙尘暴频率气候影响指数模型的建立 1 - 1 3甘肃省河西内陆河径流量对河西地区春小麦产量的影响 1 - 1 7河西走廊农灌区耕作土壤次生盐渍化成因与防治对策 1 - 2 1甘肃省飞机人工增雨天气系统分型和天气特点1 - 2 6兰州市冬季天气气候变化及降雪形势分析 1 - 30南亚高压季节性变化与甘肃省春季和初夏降水关系初探 1 - 342 0 0 3年 7月 31日固原暴雨天气数值模拟 1 - 38一次连续性冰雹天气过程的诊断分析 1 - 4 4武威市寒潮天气气候分析及…  相似文献   

4.
利用1978-2006年SSMR和SSM/I卫星遥感雪深反演资料和同期NCEP/NCAR再分析月平均值资料,采用经验正交函数分解EOF、合成分析和相关分析等方法,分析了青藏高原冬、春季积雪深度(下称雪深)的时空分布演变特征,并在此基础上研究了青藏高原冬、春季雪深的年代际变化与夏季南亚高压的可能联系。结果表明,青藏高原冬、春季雪深EOF分析第一模态呈现出全区冬春一致性的年代际变化特征,即:1987(1988)年之前青藏高原冬(春)季大部分地区少雪,1987(1988)年之后则多雪。青藏高原冬、春季雪深EOF分析第一模态时间系数与南亚高压东伸指数、强度指数相关显著。进一步分析表明,高原冬、春季积雪少(多)主要增强(减弱)了夏季高原南部对大气的加热作用,从而引起高原上空对流层的上升运动明显加强(减弱),有(不)利于热量向高空输送,致使高原对上空对流层加热作用增强(减弱),从而造成了南亚高压较强(弱),东脊点偏东(西)。  相似文献   

5.
青藏高原上空环流变化与其东侧 旱涝异常分析   总被引:16,自引:4,他引:12  
李跃清 《大气科学》2000,24(4):470-476
应用奇异值分解(SVD)技术研究了青藏高原上空100 hPa高度场与高原东侧地区夏季降水场的时空结构及相互关系。结果表明: 第一模态代表了两场间的主要耦合特征,具有高度的时空相关;前期10~12月、1~4月青藏高原上空100 hPa高度场与高原东侧地区6~8月降水场具有显著的联系,前期高度场变化引起后期南亚高压状况异常,导致高原东侧地区旱涝灾害;高原东侧地区严重干旱(洪涝)年,其上空100 hPa高度场为负(正)距平控制; 高度场与降水场的这种非同步联系,时空相关显著,时间间隔长,物理意义明确,是高原东侧地区夏季旱涝异常的一种预测信号。  相似文献   

6.
黄仪方  李跃清 《高原气象》2003,22(Z1):32-39
应用奇异值分解(SVD)技术,研究了青藏高原地面加热场与东亚地区上空500 hPa高度场及其东侧川渝地区春季气温场的时空联系和冷暖异常成因.结果表明前期冬季青藏高原地面加热场与后期春季高度场的第一模态代表了两场间的主要耦合特征,具有显著的时空相关;前期冬季青藏高原地面加热场通过影响后期春季500 hPa高度场,导致高原东侧川渝地区春季气温异常;冬季高原地面加热场强度偏强(弱),则后期春季东亚上空500 hPa高度场偏高(低),川渝地区春季气温偏高(低);加热场-高度场-气温场之间的这种非同步联系,表明冬季青藏高原地面加热场异常,通过影响未来春季大气环流变化,是造成高原东侧川渝地区春季气温异常的重要原因.  相似文献   

7.
利用NCEP/NCAR再分析资料及NOAA的OLR资料,研究了春季南亚高压在中南半岛上空建立与500hPa副高在孟加拉湾上空断裂的关系。结果表明,南亚高压建立之前,对流从“海洋大陆”向北推进,首先在中南半岛建立;而孟加拉湾地区由于青藏高原感热作用在对流层中低层形成一个反Hadley环流型的局地经圈环流,15°N附近500—700hPa有下沉运动中心,它抑制了孟加拉湾对流的建立,也不利于500hPa副高带断裂。南亚高压在中南半岛建立之后,位于高压中心西南侧的孟加拉湾上空出现一个强的辐散中心,孟加拉湾地区15°N附近的下沉运动消失,对流发展起来,降水量增加并释放大量潜热,非绝热加热中心位于500hPa,此时副高脊线断裂。因此,高层南亚高压建立所产生的辐散运动很可能对孟加拉湾上空500hPa副高带断裂及对流建立起到了触发作用。  相似文献   

8.
王黎娟  葛静 《大气科学》2016,40(4):853-863
利用1983~2012年NCEP/NCAR逐日再分析资料对夏季青藏高原大气热源和南亚高压东西振荡的低频特征以及两者的关系进行了讨论,发现夏季青藏高原东部大气热源与南亚高压纬向运动的主要低频周期都是10~20 d。在高原东部大气热源10~20 d振荡峰值位相,青藏高原上空被低频气旋控制,高原西部被低频反气旋控制,导致南亚高压主要高压中心向西移动呈伊朗高压模态;在大气热源10~20 d振荡谷值位相,低频环流形势完全相反,青藏高原上空被低频反气旋控制,高原西部被低频气旋控制,致使南亚高压主要高压中心向东移动呈青藏高压模态。高原热力场异常导致其上空暖中心变化从而引起的高层风场变化可以解释南亚高压的东西振荡。  相似文献   

9.
利用1961—2013年4—5月辽宁省52个气象站逐日降水资料及NCEP/NCAR再分析资料,对辽宁省春播期第一场透雨特征进行了详细分析,并探讨了鄂霍次克海阻塞高压对辽宁省春播期第一场透雨的影响机制。结果表明:1961—2013年辽宁省春播期第一场透雨出现日期为4月17日至5月3日,平均出现日期为4月22日,辽宁省春播期第一场透雨出现的平均日期自东南向西北依次推后。鄂霍次克海阻塞高压是影响辽宁省春播期第一场透雨出现日期的主要环流系统,受鄂霍次克海阻塞高压的阻挡,冷空气在贝加尔湖附近堆积,在对流层低层鄂霍次克海阻塞高压激发了辽宁省北部地区的一个气旋式环流,水汽从孟加拉湾地区经中国中东部地区输送至辽宁地区,为辽宁地区春播期第一场透雨的出现提供了有利的必要条件。  相似文献   

10.
西安市春季第一场透雨的初步分析   总被引:1,自引:0,他引:1  
西安市春季属半干旱气候期,冬季到初春的雪、雨稀少,常出现干旱。春季第一场透雨的出现标志着初春干旱的结束,而且它出现的日期早晚决定了春播作物的播种质量和出苗好坏,同时也影响着小麦等越冬作物的生长发育和产量的形成。因此,春季第一场透雨的预报就显得尤其重要。1概况1.l透雨标准采用气象部门制定的春季第一场透雨的标准,即本站春季(3~5月)第一次出现的日降水量大干15mm或2~3d降水量大于20mm的降水过程作为第一场透雨出现的指标。l.2气候概况根据春季第一场透雨的标准,普查了1951~1996年春季(3~5月)的降水资料。这46…  相似文献   

11.
利用1961-2007年4-5月辽宁14个站的逐日降水资料,分析了春播期第一场透雨出现日期和透雨量的季节分布特征和年际年代际变化特征及透雨出现日期和透雨量与播种期降水量的关系。结果表明:自1961年以来辽宁春播期透雨出现时间总体呈现偏晚趋势,透雨量呈偏多趋势,但趋势均不显著;春播期透雨出现时间具有明显的年代际变化特点;透雨出现时间与透雨量呈不显著的正相关,与播种期降水量呈显著的负相关,即春播期透雨出现时间偏晚(早)的年份,透雨量偏大(小),播种期降水量偏少(多)。  相似文献   

12.
辽宁春播期第一场透雨的气候特征及其变化规律   总被引:3,自引:0,他引:3  
利用1961-2007年4—5月辽宁14个站逐日降水资料,分析了春播期第一场透雨出现日期和透雨量的季节分布特征和年际年代际变化特征及透雨出现日期和透雨量与播种期降水量的关系。结果表明:自1961年以来,辽宁春播期透雨出现时间总体呈偏晚趋势,透雨量呈偏多趋势,但趋势均不显著;春播期透雨出现时间具有明显的年代际变化特点;透雨出现时间与透雨量呈不显著的正相关,与播种期降水量呈显著的负相关,即春播期透雨出现时间偏晚(早)的年份,透雨量偏大(小),播种期降水量偏少(多)。  相似文献   

13.
春夏东亚大气环流年代际转折的影响及其可能机理   总被引:2,自引:0,他引:2  
本文通过多变量联合经验正交分解(MV-EOF)方法揭示了近30年(1979~2010年) 春季和夏季东亚大气环流所发生的年代际转折及其与中国南方降水年代际季节反相变化的内在联系,探讨了局地性大气热源年代际变化影响东亚大气环流年代际转折的可能机理.结果表明:(1)东亚大气环流春季第一模态和夏季第二模态在90年代中期都发生了明显的年代际转折;(2)与春季大气环流第一模态和夏季大气环流第二模态年代际转折相对应的是中国南方降水明显的年代际季节反相变化,即春季降水年代际减少,夏季降水年代际增多;(3)春季青藏高原和夏季贝加尔湖地区大气热源年代际变化对东亚大气环流年代际转折有一定贡献,是造成中国南方降水年代际季节反相变化的直接原因;(4)春季青藏高原大气热源的年代际减弱,使得高原东南侧的西南风减弱,导致中国南方上空水汽输送不足,春季降水减少.夏季贝加尔湖大气热源偶极型分布由“南负北正”转变为“南正北负”,由此在贝湖上空激发高压异常,使得夏季雨带北进受阻而停滞南方,造成中国南方夏季降水增多.  相似文献   

14.
董金湖 《气象》1993,19(12):41-43
1992年初夏西藏中部沿江河谷地区、昌都地区及那曲西部出现严重干旱。分析表明,副高位置偏南,北跳偏迟,高原及周边地区从春到夏的环流调整偏迟;印度季风低压初上高原时间推迟;切变线系统偏弱、位置偏北等,是造成初夏干旱的主要环流背景。  相似文献   

15.
徐士琦  李栋梁 《气象》2016,42(3):271-279
利用1958—2012年4—5月东北地区(39°~55°N、118°~135°E)101个站点逐日降水资料、青藏高原地区(25°~40°N、73.75°~103.75°E)JRA-55的地面感热和潜热通量月平均再分析资料以及NCEP/NCAR-I大气环流场的月平均再分析资料,分析了春播期首场透雨出现日期的时空变化特征及其与透雨量和播种期降水量间的关系,以及对青藏高原地面加热场强度异常的响应及其可能机制。结果表明:透雨日期自1958年以来在东北地区的西北和东南大部分区域呈现略微偏晚的趋势;中部有略微偏早的趋势。春播期首场透雨出现时间偏早(晚)的地方,首场透雨量小(大),春播期总降水量多(少)。同时,4月青藏高原地面加热场强度增强(减弱),有利于(不利于)来自北方的冷空气和南方的暖湿气流在东北上空交汇,且上升气流增强(减弱),水汽输送充沛(减少),导致该地区春季首场透雨出现的时间偏早(晚)。  相似文献   

16.
东亚地区夏季风爆发过程   总被引:72,自引:5,他引:67  
利用中国194站1961~1995年日降水资料及NCEP1979~1997年候格点降水资料,探讨了亚洲地区自春到夏的雨季开始分布。结果表明,东亚地区自春到夏存在副热带季风雨季开始和热带季风雨季开始。前者于4月初开始于华南北部和江南地区,随后向南和向西南扩展,于4月末扩展到华南沿海和中南半岛,这个雨带主要是冷空气和副热带高压西侧转向的SW风以及南亚地区冬春副热带南支西风槽中西风汇合而形成的,是副热带季风雨季开始。后者是南海热带季风爆发后使原来由江南移到华南沿岸的副热带季风雨带随副热带高压北进而北进,前汛期雨季进入盛期,江南出现第二次雨峰,形成梅雨期和江淮及华北雨季。同时,热带季风雨带也自东向西传播到达南亚地区而形成热带季风雨季。还讨论了1998年东亚地区夏季风爆发过程,指出南海夏季风爆发期的季风由副高北侧形成的新生气旋进入南海造成南海中部西风和南海越赤道气流转向的SW季风加强汇合而形成,因而是东亚季风系统中环流系统季节变化造成的,和印度季风无关。在南海季风爆发期阿拉伯海仍由副热带反气旋控制,南亚仍是上述副热带反气旋北侧NW风南下后转向的偏西副热带气流所控制,索马里低空急流仍未爆发,赤道西风并未影响南海。  相似文献   

17.
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR re-analysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979--1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.  相似文献   

18.
利用热带测雨卫星搭载的测雨雷达10年探测结果,就季尺度亚洲对流降水和层云降水的降水频次和强度及降水垂直结构的特点进行了研究.结果表明春、秋、冬三季东亚季平均降水环西太平洋副热带高压呈带状分布,雨强一般不超过10 mm/d;夏季,沿孟加拉湾、中国西南、中国东部至日本的大片雨区中出现了大于12 mm/d强降水;亚洲陆面对流和层云降水强度均弱于洋面.亚洲山地强迫不但可引起迎风坡上千公里长度的高降水频次和强降水带,而且导致其下风方向降水频次减少.季尺度降水频次分析表明,亚洲大部分地区对流降水频次小于3%;而层云降水频次一般大于3%,最高可超过10%;副热带高压南侧及西南侧的热带地区对流和层云降水频次均高于副热带高压北侧及西北侧的中纬度地区;降水频次的区域分布还表明,春季中南半岛至中国华南及南海南部对流活动多于同期的印度次大陆.季平均对流和层云降水廓线的季节变化主要表现为"雨顶"高度的季节变化,即降水云的厚度变化;两类降水平均廓线季节变化的区域性差异表明,热带外地区较热带地区显著、陆面较同纬度洋面显著、孟加拉湾比南海显著,而南海和西太平洋暖池无明显的季节变化.此外,降水结构的剖面分析还表明对流降水存在4层结构、层云降水存在3层结构.  相似文献   

19.
利用中国气象局国家气象信息中心提供的青藏高原60个测站1961~2007年逐日气温资料, 分析了青藏高原近47年来四季开始日期随海拔高度和纬度的变化趋势。结果表明, 春季和夏季开始日期是整体提前, 而秋季和冬季开始日期是整体延迟的, 春季和冬季开始日期的变化相对夏季和秋季更为明显;四季开始日期随海拔高度变化分布明显不同, 海拔越高, 春夏季开始日期来临越晚, 秋冬季开始日期来临越早, 海拔越低, 春夏季开始日期来临越早, 秋冬季开始日期来临越晚;海拔越高, 春夏开始日期提前的天数越多, 秋冬开始日期推迟天数越多, 反之低海拔地区相对更小, 由此得知高海拔地区的季节开始日期对当地气温的增温更为敏感;春季开始日期在36°N以南基本随纬度递增而开始日期推后, 36°N以北地区春季相对偏早, 夏季、秋季、冬季开始日期随纬度的变化和春季变化基本相似;四季开始日期来临的早晚受到多种因素包括气温、海拔和纬度共同影响, 季节延迟率也受到气温和海拔的影响, 但是纬度对季节延迟率影响不大;四季开始日期的提前和延迟变化和当地气温的变化几乎一致, 秋冬季节的开始日期对气温变化更为敏感, 高海拔地区的季节开始日期对气温变化更为敏感。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号