首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
This paper illustrates the results of an experimental investigation (model-to-prototype length ratio equal to 12) carried out to reproduce the cross-shore evolution of nourished sandy beaches. New two-dimensional experiments were performed to study the short-term response of the cross-shore profile for both “soft” (unprotected) and “mixed” (protected by submerged breakwaters) beach fill projects. Due to the simplified reproduction of prototype conditions in a two-dimensional geometry, only cross-shore sediment transport is considered. The results are related to the immediate post-nourishment evolution and far from beach fill boundaries where long-shore gradients of long-shore sediment transport are likely to be negligible. Three different pseudo-random wave trains were generated in order to simulate both accretive and erosive conditions. A fourth wave train, characterised by time-varying incident wave spectrum was generated for the investigation of the beach response to simplified storm time evolution. Dimensionless experimental results are given in terms of wave parameters, key features of cross-shore profile evolution and sediment transport rates. Furthermore, being highly resolved in both time and space, experimental data are suitable for mathematical model validation. It was observed that submerged breakwater switches erosive conditions to slightly accretive, at least within the tested experimental range.  相似文献   

2.
赵辰  杨晨俊 《海洋工程》2014,32(3):72-77
螺旋桨工作时在其周围形成诱导速度场,诱导速度随到桨叶距离的增大而衰减。采用CFD方法模拟螺旋桨敞水性能时,只能截取有限尺度的流域进行计算,此时计算域边界上诱导速度并不为零,将进口速度设为进速是近似的。一般采用足够大的计算域,使螺旋桨前方及侧面边界尽量远离桨叶。为了在较小的计算域中实现螺旋桨敞水性能的准确预报,提出在设定进口速度时计入螺旋桨诱导速度的CFD模拟方法。应用升力面方法计算诱导速度,将进口速度设为进速与诱导速度之和。逐步减小计算域尺度,考察敞水性能及压力分布计算结果的变化情况及精度。算例比较表明:通过考虑诱导速度,可以大幅度减小进口与螺旋桨的距离而不降低计算精度。  相似文献   

3.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   

4.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.  相似文献   

5.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

6.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

7.
Numerical cross-shore profile evolution models have been good at predicting beach erosion during storm conditions, but have difficulty in predicting the accretion of the beach during calm periods. This paper describes the progress made in modifying and applying the public domain XBeach code to the prediction and explanation of the observed behaviour of coarse-grained beaches in the laboratory and the field under accretive conditions. The paper outlines in details the changes made to the original code (version 12), including the introduction of a new morphological module based upon Soulsby's sediment transport equation for waves and currents, and the incorporation of Packwood's infiltration approach in the unsaturated area of the swash region. The competence of this modified model during calm conditions for describing the steepening of the profile, and the growth of the beach berm is demonstrated. Preliminary results on the behaviour of the beach subject to both waves and tides are presented. Good agreement is found between the model simulations and large-scale laboratory measurements, as well as field observations from a composite beach in the UK. The reasons for the model's capabilities are discussed.  相似文献   

8.
We studied shocks in a coastal boundary current with zero potential vorticity. By coastal boundary current, we mean a semigeostrophic light fluid flow over an infinitely deep dense fluid and along a coast on its right hand side, with its lower interface exposed to the ocean surface at some finite distance from the coast. The shocks are assumed to conserve mass and momentum. It is found that the shocks can be classified into two categories, coastal shocks and frontal shocks, by the signs of the upper layer flux relative to the shocks. Coastal shocks, for which the relative upper layer flux is negative, always propagate downstream. The upper layer at the coast is thicker on the upstream sides of coastal shocks than on the downstream sides. Frontal shocks, for which the relative upper layer flux is positive, propagate upstream as well as downstream. In most cases, the current is wider on the downstream sides of frontal shocks than on the upstream sides. However, under the circumstances that the current is nearly separated from the coast, the current is wider on the upstream sides of frontal shocks. Coastal and frontal shocks both dissipate energy of the current. We also demonstrate that special shocks with no light fluid on the downstream sides cannot exist irrespective of the potential vorticity distribution.  相似文献   

9.
The sediment transport parameter helps determining the amount of sediment transport in cross-shore direction. The sediment transport parameter therefore, should represent the effect of necessary environmental factors involved in cross-shore beach profile formation. However, all the previous studies carried out for defining shape parameter consider the parameter as a calibration value. The aim of this study is to add the effect of wave climate and grain size characteristics in the definition of transport rate parameter and thus witness their influence on the parameter. This is achieved by taking the difference in between “the equilibrium wave energy dissipation rate” and “the wave energy dissipation rate” to generate a definition for the bulk of sediment, dislocating within a given time interval until the beach tends reach an equilibrium conditions. The result yields that empirical definition of transport rate parameter primarily governs the time response of the beach profile. Smaller transport rate value gives a longer elapsed time before equilibrium is attained on the beach profile. It is shown that any significant change in sediment diameter or wave climate proportionally increases the value of the shape parameter. However, the effect of change in wave height or period on sediment transport parameter is not as credit to as mean sediment characteristics.  相似文献   

10.
Numerical modeling of coastal circulation encompassing the nearshore requires forcing by tide, surface gravity waves, and possibly other factors. In the nearshore, the wave-induced longshore current and setup are dominant hydrodynamic processes, and lateral boundary conditions representing tide and oceanic forcing typically do not include surface-wave contributions. Without proper boundary conditions, significant gradients in current and water level can occur that contaminate the solution in the internal domain. A standard strategy is to place the boundaries far from the site of interest, but this strategy greatly increases computational demands, and it may not be appropriate for long-term simulations. This paper describes a wave-adjusted boundary condition that accounts for wave-induced water level and current acting in combination with tidal forcing. The wave-adjusted boundary condition is demonstrated for an idealized case of a parallel-contour beach and for an engineering application at Ocean City, MD.  相似文献   

11.
An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge-Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.  相似文献   

12.
《Coastal Engineering》2001,42(3):199-218
A large-scale laboratory facility for conducting research on surf-zone sediment transport processes has been constructed at the U.S. Army Engineer Research and Development Center. Successful execution of sediment transport experiments, which attempt to replicate some of the important coastal processes found on long straight beaches, requires a method for establishing the proper longshore current. An active pumping and recirculation system comprised of 20 independent pumps and pipelines is used to control the cross-shore distribution of the mean longshore current. Pumping rates are adjusted in an iterative manner to converge toward the proper settings, based on measurements along the beach. Two recirculation criteria proposed by Visser [Coastal Eng. 15 (1991) 563] were also used, and they provided additional evidence that the proper total longshore flow rate in the surf zone was obtained. The success of the external recirculation system and its operational procedure, and the degree of longshore uniformity achieved along the beach, are the subjects of this paper. To evaluate the performance of the recirculation system, and as a precursor to sediment transport experiments, two comprehensive test series were conducted on a concrete beach with straight and parallel contours (1:30 slope), one using regular waves and the other using irregular waves. In the regular wave case, the wave period was 2.5 s and the average wave height at breaking was approximately 0.25 m. In the irregular wave case, the peak wave period was 2.5 s and the significant breaking wave height was approximately 0.21 m. The longshore current recirculation system proved to be very effective in establishing uniform mean longshore currents along the beach in both cases. This facility and the data presented here are unique for the following reasons: (1) the high cross-shore resolution of the recirculation system and the ease with which changes can be made to the longshore current distribution, (2) the degree of longshore uniformity achieved as a percentage of the length of the basin (even near the downdrift boundary), (3) the scale of the wave conditions generated, and (4) the relatively gentle beach slope used in the experiments (compared to previous laboratory studies of the longshore current). Measured data are provided in an appendix for use in theoretical studies and numerical model development and validation.  相似文献   

13.
系泊船非线性波浪力时域计算:二维模型   总被引:7,自引:1,他引:6  
王大国  邹志利 《海洋学报》2004,26(2):104-117
为找到具有工程实用价值的港口系泊船波浪力的时域计算方法,建立了在港口中存在系泊船时非线性波浪力时域计算的垂直二维耦合模型:用Boussinesq方程计算船的两侧的外域,用欧拉方程计算船底面下的内域,两域在交界面处的连接条件是流量连续和压力相等.将复平面内的边界元方法应用于所研究问题,对耦合模型进行了验证.进行了相关模型实验,实验结果与数值计算结果比较表明这两种数值计算模型都具有满意的精度,但耦合模型的计算效率要远远高于边界元方法的计算效率.本耦合模型的数学处理简单,可适用于工程计算.  相似文献   

14.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

15.
The performance of two well-known equations to predict the depth-averaged alongshore suspended sediment flux [Van Rijn, L.C., 1984. Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering 110, 1613–1641; and Bailard, J.A., 1981. An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research 86, 10938–10954] was assessed by comparing predictions with 2306 field estimates based on a vertical stack of three optical backscatter sensors and a single electromagnetic flow meter. The observations were collected at four cross-shore positions on the intertidal beach of Egmond aan Zee, the Netherlands, during calm to storm conditions, with the offshore significant wave height peaking at 3.7 m. Measured hydrodynamics were employed in the computations of both models. Also, default parameter values were used without calibration to the data. We found that both models underpredicted the observations. Overall, the Van Rijn model outperformed the Bailard model, with about 70% of the model prediction lying between 1/5 to 5 of the observations under energetic conditions. For the Bailard model this was only about 20%. The performance of the Van Rijn model is, however, sensitive to the wave-related roughness, one of its highly uncertain free parameters. This may allow for an easy calibration when estimates of the depth-averaged alongshore sediment flux are available but may lead to serious errors in situations without data to constrain the predictions. We suspect that the discrepancy between the observations and model predictions is due to an overestimation of the observed fluxes (high turbidity, air bubbles) and an underestimation of the modeled fluxes because of missing physics related primarily to breaking waves.  相似文献   

16.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

17.
The morphology, bedforms and hydrodynamics of Merlimont beach, in northern France, characterised by intertidal bars and a spring tidal range of 8.3 m, were surveyed over a 10-day experiment with variable wave conditions that included a 2-day storm with significant wave heights of up to 2.8 m. The beach exhibited two pronounced bar-trough systems located between the mean sea level and low neap tide level. Waves showed a cross-shore depth modulation, attaining maximum heights at high tide. The mean current was characterised dominantly by strong tide-induced longshore flows significantly reinforced by wind forcing during the storm, and by weaker, dominantly offshore, wave-induced flows. Vertical tidal water-level variations (tidal excursion rates) showed a bimodal distribution with a peak towards the mid-tide position and low rates near low and high water. The two bar-trough systems in the mid-tide zone remained stable in position during the experiment but showed significant local change. The absence of bar migration in spite of the relatively energetic context of this beach reflects high macro-scale bar morphological lag due to a combination of the large vertical tidal excursion rates in the mid-tide zone, the cross-shore wave structure, and the pronounced dual bar-trough system. The profile exhibited a highly variable pattern of local morphological change that showed poor correlation with wave energy levels and tidal excursion rates. Profile change reflected marked local morphodynamic feedback effects due mainly to breaks in slope associated with the bar-trough topography and with trough activity. Change was as important during low wave-energy conditions as during the storm. Strong flows in the entrenched troughs hindered cross-shore bar mobility while inducing longshore migration of medium-sized bedforms that contributed in generating short-term profile change. The large size and location of the two pronounced bars in the mid-tide zone of the beach are tentatively attributed respectively to the relatively high wave-energy levels affecting Merlimont beach, and to the cross-shore increase in wave height hinged on tidal modulation of water depths. These two large quasi-permanent bars probably originated as essentially breakpoint bars and are different from a small bar formed by swash and surf processes in the course of the experiment at the mean high water neap tide level, which is characterised by a certain degree of tidal stationarity and larger high-tide waves.  相似文献   

18.
This is the first of three papers on the modelling of various types of surf zone phenomena. In this first paper, part I, the model is presented and its basic features are studied for the case of regular waves. The model is based on two-dimensional equations of the Boussinesq type and it features improved linear dispersion characteristics, possibility of wave breaking, and a moving boundary at the shoreline. The moving shoreline is treated numerically by replacing the solid beach by a permeable beach characterized by an extremely small porosity. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is based on the surface roller concept for spilling breakers using a geometrical determination of the instantaneous roller thickness at each point and modelling the effect of wave breaking by an additional convective momentum term. This is a function of the local wave celerity, which is determined interactively. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches and over submerged bars. Model results comprise time series of surface elevations and the spatial variation of phase-averaged quantities such as the wave height, the crest and trough elevations, the mean water level, and the depth-averaged undertow. Comparisons with physical experiments are presented. The phaseaveraged balance of the individual terms in the momentum and energy equation is determined by time-integration and quantities such as the cross-sectional roller area, the radiation stress, the energy flux and the energy dissipation are studied and discussed with reference to conventional phase-averaged wave models. The companion papers present cross-shore motions of breaking irregular waves, swash oscillations and surf beats (part II) and nearshore circulations induced by breaking of unidirectional and multidirectional waves (part III).  相似文献   

19.
The performance of regional tide model simulations is examined in relation to the choice of open boundary conditions. Three barotropic open boundary conditions, clamped elevation, clamped normal velocity, and Flather, give similar results when the prescribed values are exact; however, Flather is much less sensitive to errors in the prescribed values. Of particular concern, it was found that with a phase error between the two boundaries, both the clamped conditions resulted in magnitude errors in the unclamped variable (although the simulation remained stable).A modified flow relaxation scheme for the depth-varying prognostic variables is presented. This implementation allows the transmission of a range of vertical modes while retaining realistic topography at the boundary. It was found to be an excellent internal tide boundary condition in tests comparing simulations of different domain length encompassing a ridge and sloping bottom, and in a comparison to an analytical solution. Mass is conserved without any artificial volume constraint.  相似文献   

20.
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations   总被引:1,自引:0,他引:1  
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe' s flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号