首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国首次北极科学考察期间 ,于 8月 2 0- 2 3日在楚科奇海浮冰区联合冰站实施了为期 4天的短期颗粒有机物通量研究。结果显示真光层的颗粒有机碳通量为 1 .582mgCm- 2 day- 1 ,2 2 0m深层为 1 .339mgCm- 2 day- 1 ,而相应的沉降颗粒物总通量分别高达 8.788和 1 0 .30 3mgm- 2 day- 1 。显示北极浮冰区的夏季融冰季节后期 ,颗粒有机碳通量的水平较低。与颗粒有机碳通量水平相似 ,生源硅和活性磷的通量水平也较低。对硅藻通量组份的分析表明 ,真光层沉降硅藻的优势种为Nitzschiacf.seriata、Naviculaglacialis和Melosirasp .,而 2 2 0m层则Lepto cylindrussp .占绝对优势 ,其丰度数量百分比均超过 70 %。硅藻碳通量的绝对值较低 ,为0 .1 0 7- 0 .1 1 3mgCm- 2 day- 1 。然而 ,真光层大型桡足类的碳估算值高达 1 0 8.67mgCm- 2day- 1 ,占浮游动物总碳量的 95 .3 % ,大型浮游动物的表观碳通量高于浮游植物碳通量 2- 3个数量级 ,显示楚科奇海夏季融冰期高浮游动物碳量、低浮游植物碳量的特点。但浮游动物表观碳量高的主要原因与浮游动物的昼夜垂直运动有关 ,却并非是实际向深层海洋传输的碳量  相似文献   

2.
Ice algal accumulations were recognised by their vertical distribution in the ice, as surface, interior and bottom assemblages. The latter were quantitatively the most important in the Barents Sea and in particular the sub-ice assemblage floating towards, or attached to, the undcr-surface of the sea ice. Colonisation of the ice takes place by a "sieving" of the water between closely spaced platelets on the ice under-surface. Once associated with the ice, the assemblage undergoes a succession terminated by the dominance of ice specialists. In a horizontal S-N section through the ice, three distinct zones may be recognised: at the ice edge the recently colonised ice has a layer of algae up to a few millimeters in thickness consisting primarily of planktonic species. Further into older first year ice the algal layer becomes thicker and is typically dominated by the pennate diatom Nilzschia frigida Grunow. Below multi-year ice in the central polar basin decimetre-thick mats of algae are found, consisting almost exclusively of the centric diatom Melosira arclica (Ehrenberg) Dickie and a few associated, mostly epiphytic, species. The predominantly planktonic sub-ice assemblages at the ice edge can grow under stable conditions as soon as the light becomes adequate in the spring, and they are able to multiply actively for one to two months before planktonic growth is possible. The sub-ice plankton assemblage thus forms an inoculum released to the stabilising water when the ice starts melting. This may explain how a phytoplankton bloom can develop explosively at the ice edge as soon as the ice melting commences, at a time when the number of algal cells in the water column is still very low.  相似文献   

3.
Diatom species counts were conducted on 171 sediment samples from the 13-m-long core PG1351 from Lake El’gygytgyn, northeast Siberia. The planktonic Cyclotella ocellata-complex dominates the diatom assemblage through most of the core record, persisting through a variety of climate conditions. Periphytic diatoms, although less abundant, have greater diversity and greater down-core assemblage variation. During warm climate modes, longer summer ice-free conditions may have allowed more complex diatom communities to develop in shallow-water habitats, and enhanced circulation may have increased transport of these diatoms to deeper parts of the lake. Zones of low overall diatom abundance further support inferred intervals of low lake productivity during times of extended lake ice and snow cover. More data on the modern spatial and temporal distribution of diatom species in the Lake El’gygytgyn system will improve inferences from core records. This is the last in a series of eleven papers published in this␣special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

4.
Examination of 17 samples collected by a 20 μm meshed meshed net in Kongsfjorden, Svalbard, 8–19 July 1988, showed a dominance of dinoflagellates and the chrysophyte Dinobryon Balticum in the surface layers, whereas the diatom and the haptophyte Phaecystis pouchetii abundance increased with depth. The diatom Pseudo-nitzschia granii appeared together with P. pouchetii through the whole water column, and Actinocyclus curvatulus was one of the few diatoms present also in the surface samples. Two samples, from 15 and 50 m, respectively, were cleaned of organic material and mounted in Naphrax for a more critical identification of the diatoms. We were able to group the species according to habitats, especially types of ice. The planktonic Thalassiosira antarctica var. borealis, T. hyalina, T. nordenskioeldii, Bacterosira bathyomphaia, Chaetoceros furcellatus, C. socialis and Fragilariopsis oceanica were present mainly as resting stages representing a post-bloom situation. These species and T. gravida appear early in the season and may have started to grow already under the ice. Fragilariopsis cylindrus and F. oceanica seem to have a closer affinity to ice than Thalassiosira and Chaetoceros spp. although they are common in the plankton. Some Nitzschia species which are usually regarded as typical sea-ice diatoms and have thicker and older ice as the main habitat were present only in small cell numbers in the plankton samples. The last component, evidently introduced from Atlantic water in the Norwegian Sea, consisted of diatoms with a more oceanic distribution, e. g. Fragilariopsis pseudonana and a small form of Thalassiosira bioculata .  相似文献   

5.
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.  相似文献   

6.
Sediment trap collections near Cape Maclear, Lake Malai, were compared to phytoplankton and surface sediment diatoms to assess taphonomic variations. The sedimenting diatom community became progressively different from the diatom plankton with increasing depth: long Nitzschia species were strongly under-represented in the traps (annually, 53% among planktonic diatoms vs. 14% in the offshore 29 m trap; p0.005 by Kruskal-Wallis test), while Melosira was greatly over-represented in traps (32% vs. 57%; p<0.005). The abundances of the minor taxa (Rhopalodia, Fragilaria, Cymbella, and Surirella) were greatly enhanced in traps relative to the plankton, but they were still relatively uncommon (<3% of all diatoms each). Differences in grazing, dissolution, and sinking rates alone are insufficient to account for these distortions; a combination of these, plus perhaps unknown factors, strongly influence the deposited assemblage.These misrepresentations were also present at the sediment surface. The greatest discrepancy was noted for Melosira (32% of plankton vs. 53% of sediment surface diatoms; p<0.005) and for elongate Nitzschia species (53% of plankton vs. 0.8% in sediments; p<0.005). In Lake Malai, at least, paleolimnologists must not assume a straightforward correlation of modern and fossil assemblages.  相似文献   

7.
Surficial sediments of three northern Egyptian lakes (Manzala, Burullus and Edku) show differences in diatom assemblages deposited in different sites of these lakes. A total of 172 species and varieties belonging to 58 genera were identified and counted from 62 samples. Of these, 163 diatom taxa were recorded from Manzala Lake sediments, 147 taxa were found in Burullus Lake sediments, and 117 taxa were identified in Edku Lake sediments. The considerable variation in the composition and distribution of the diatom assemblages among these lakes was mainly related to differences in the water quality, salinity, the concentration of nutrients and climatic changes. The planktonic diatom Cyclotella meneghiniana was dominant in the majority of the samples from Manzala Lake, but dominant in only a few samples from the middle parts of Burullus and Edku lakes. The non-planktonic epiphytic taxa Cocconeis placentula and Epithemia sorex were the subdominant species in the surface sediments, especially in shallow and marginal parts of the lakes. Multivariate statistical techniques (hierarchical ascending clustering and canonical correspondence analysis) were used to identify ecological groups of diatoms and to investigate which environmental variables were important in explaining the variation between these groups. Eight ecological groups containing distinctive diatom assemblages reflect current environmental conditions; especially saltwater intrusion in the north and nutrient-rich freshwater in the south.  相似文献   

8.
George VI Ice Shelf is the largest ice shelf on the western side of the Antarctic Peninsula and its northern margin marks the southern most latitudinal limit of recent ice shelf retreat. As part of a project to reconstruct the long-term (Holocene) history of George VI Ice Shelf we studied two epishelf lakes impounded by the ice shelf at Ablation Point, on the east coast of Alexander Island. These lakes, Moutonnée and Ablation, are stratified water bodies with a lower marine layer and an upper freshwater layer. To determine if their sediment records could be used to detect past changes in the presence or absence of the ice shelf it was necessary to describe their present-day limnology and sedimentology. We measured water column chemistry and sampled the water column and sediments of the lakes along vertical and horizontal transects. We analysed these samples for diatoms, stable isotopes (δ18O, δ2H, δ13CDIC, δ13Corg), geochemistry (TOC, TN, C/N ratios) and physical sedimentology (grain-size). This was supplemented by chemical and biological reference data from the catchments. Results showed that the water columns of both lakes are nutrient limited and deficient in phytoplankton. Benthic productivity is low and decreases with depth. Comparison of water column chemistry with an earlier survey shows a net increase in the thickness of the freshwater layer in Moutonnée Lake between 1973 and 2001, which could indicate that George VI Ice Shelf has thinned during this period. However, a similar trend was not observed in Ablation Lake (5 km to the north) and an alternative explanation is that the changes are a seasonal phenomena. Data from the surface sediment transects identified a number of proxies that respond to the present day stratification of the water column including diatom species composition, stable isotopes and geochemistry, particularly in Moutonnée Lake. Collectively these data have been used to develop a conceptual model for determining past ice shelf configuration in epishelf lakes. Specifically, periods of past ice shelf loss, and the removal of the ice dam, would see the present stratified epishelf lake replaced by a marine embayment. It is suggested that this change would leave a clear signature in the lake sediment record, notably the deposition of an exclusively marine biological assemblage, increased ice rafted debris and δ13Corg values that are indicative of marine derived organic matter. These authors contributed equally to this work  相似文献   

9.
对1999年春季采集于北极拉普捷夫海东南部的冰藻和冰下浮游植物群落的种类组成进行了分析,并对丰度和生物量进行了统计和对比。藻种以硅藻占绝对优势,其中又以羽纹硅藻为主。优势种集中,主要包括海洋拟脆杆藻(Fragilariopsisoceanica)、圆柱拟脆杆藻(F.cylindrus)、寒冷菱形藻(Nitzschiafrigida)、普罗马勒菱形藻(N. promare)、带纹曲壳藻(Ach nanthestaeniata)、新寒冷菱形藻(Nitzschianeofrigida)、大洋舟形藻(Naviculapelagica)、范氏舟形藻(N. vanhoeffenii)、北极直链藻(Melosiraarctica)、北方舟形藻(N. septentrionalis)、新月细柱藻(Clindrothecaclosterium)和绿藻门的塔形藻(Pyramimonassp. )。微藻主要集中在冰底10cm,丰度为14. 6-1562. 2×104 cells·L-1,平均为639. 0×104 cells·L-1;生物量为7. 89-2093. 5μgC·L-1,平均为886. 9μgC·L-1,总体上比次冰底高1个数量级,比冰下表层水柱高2个数量级。冰底20cm冰柱的累计丰度和生物量平均分别为冰下20m水柱累计量的7. 7和12. 2倍,显示冰藻在春季海冰融化前在近岸生态系统中的重要作用。尽管各站位冰底和冰下表层水柱藻类群落的相似性普遍不高,但整个调查海域冰底和冰下水柱优势种极为相似,春季期间冰藻对冰下浮游植物群落的影响明显。由于  相似文献   

10.
To reconstruct the pattern of past climate change in central Japan during the last 140 kyr, total planktonic diatom valve concentrations (valves g–1) and fluxes (valves cm–2 year–1) of total planktonic diatoms flux (PVF) and individual species were examined using a 140-m core taken from Lake Biwa, Shiga Prefecture. Most records had a sample resolution between approximately 150 and 300 yr. Based on characteristics of past and modern diatom responses to possible climate variables, we interpreted changes in Stephanodiscus suzukii flux (SVF) to reflect changes in phosphorus levels, which reflect, in turn, summer precipitation levels; changes in Aulacoseiva nipponica flux (AVF) reflect winter vertical lake-water mixing induced by winter temperatures and snowfall levels. Thus, changes in total planktonic diatom flux reflect a combination of summer precipitation, winter temperature, and snowfall values. During the 140–101 ka interval, changes in S. suzukii productivity at a millennial timescale may correspond to changes in summer rainfall in central Japan. The disappearance of A. nipponica during the same period could indicate weaker vertical mixing, possibly caused by increased temperatures and decreased snowfall levels in winter. During the 101–70 ka interval, the AVF record shows levels near or above those observed in present times, indicating that winter water temperatures fell within the optimal range for A. nipponica to prosper. Generally low AVF values during the 70–7 ka interval indicate weak winter vertical mixing and cold winters. The many intervals with low PVF values during the same period suggest decreased summer precipitation levels. Between 7 and 0 ka, PVF, SVF, and AVF records show levels near or above those of the present, suggesting winter temperatures favorable for A. nipponica growth, and snowfall and summer precipitation levels probably similar to or above those currently recorded.  相似文献   

11.
Diatom assemblages in surface sediments were sampled along three transects in Lake 239, from the Experimental Lakes Area (NW Ontario), and analyzed in order to explore the relationship between modern species distributions and water depth. Approximately 170 diatom species were identified in surficial sediments at lake depths from 2 to 30 m. The species composition varied with sample depth but remained highly similar across all three transects. The main patterns of variation in the diatom assemblages across transects, derived from a detrended correspondence analysis (DCA), showed that assemblages were highly correlated (r = 0.97 to 0.98). At depths > 8 m the pattern of predominantly benthic composition changed to a planktonic assemblage dominated by Cyclotella stelligera. This depth currently corresponds to the depth of 1% light penetration as assessed from extinction coefficient measurements. Diatom species diversity increases with the switch to the near-shore benthic taxa in all three transects. Additionally, there is a large decrease in the ratio of chrysophyte scales to diatoms at depths < 8 m. Light transmission data from wet and dry periods over the last 35 years suggests that during dry periods the extent of the littoral zone should change by over 2 m. We suggest that cores along a transect from 8 to 14 m should provide a highly sensitive location for detailed paleoclimatic study.  相似文献   

12.
We measured variability in the composition of diatom and chrysophyte assemblages, and the pH inferred from these assemblages, in sediment samples from Big Moose Lake, in the Adirondack Mountains of New York. Replicate samples were analyzed from (1) a single sediment core interval, (2) 12 different intervals from each of 3 separate cores, and (3) 10 widely spaced surface sediment samples (0–1 cm). The variability associated with sample preparation (subsampling, processing, and counting) was relatively small compared to between-core and within-lake variability. The relative abundances of the dominant diatom taxa varied to a greater extent than those of the chrysophyte scale assemblages. Standard deviations of pH inferences for multiple counts from the same sediment interval from diatom, chrysophyte, and diatom plus chrysophyte inference equations were 0.04 (n=8), 0.06 (n=32), and 0.06 (n=8) of a pH unit, respectively. Stratigraphic analysis of diatoms and chrysophytes from three widely spaced pelagic sediment cores provided a similar record of lake acidification trends, although with slight differences in temporal rates of change. Average standard deviations of pH inferences from diatom, chrysophyte and diatom plus chrysophyte inference equations for eight sediment intervals representing similar time periods but in different cores were 0.10, 0.20, and 0.09 pH unit, respectively. Our data support the assumption that a single sediment core can provide an accurate representation of historical change in a lake. The major sources of diatom variability in the surface sediments (i.e., top 1.0 cm) were (1) differences in diatom assemblage contributions from benthic and littoral sources, and (2) the rapid change in assemblage composition with sediment depth, which is characteristic of recently acidified lakes. Because scaled chrysophytes are exclusively planktonic, their spatial distribution in lake sediments is less variable than the diatom assemblages. Standard deviations of pH inferences for 10 widely spaced surface sediment samples from diatom, chrysophyte and diatom plus chrysophyte inference equations were 0.21, 0.09, and 0.16 of a pH unit, respectively.  相似文献   

13.
Sediment traps placed in the profundal region of Elk Lake, north central Minnesota during the 1979 spring and 1983–84 fall and spring seasons monitored seasonal diatom production for two climatically distinctive periods. The spring of 1979 was one of the coldest and wettest on record. Ice out at Elk Lake was 10 days later than average, and spring circulation was short. Fragilaria crotonensis dominated the late spring and early summer diatom production in association with Synedra and Cyclotella species, perhaps because rates of phosphorus supply were low compared to silica. The winter of 1983–84 was drier than usual, and the early but cold spring of 1984 caused ice out at Elk Lake to be about 1 week earlier than normal. Spring storms promoted a long and full circulation that allowed Stephanodiscus minulutus to bloom, presumably in response to increased phosphorus loading related to deep and vigorous circulation. The two dominant diatoms in Elk Lake, F. crotonensis and S. minutulus may reflect climatic patterns that control lake circulation. The climatically regulated occurrence of these diatoms is generally, but not specifically, comparable to their distribution in lake surface sediments throughout Minnesota. A combination of regional and lake-specific studies on the controls of diatom succession and distribution provides climatic insights for interpreting paleolimnogical records of diatoms.  相似文献   

14.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

15.
Benthic diatoms are commonly used for palaeoenvironmental reconstruction in Arctic regions, but interpretation of their ecology remains challenging. We studied epilithic diatom assemblages from the shallow margins of 19 lakes from three areas (coast-inland-ice sheet margin) along a climate gradient in Kangerlussuaq, West Greenland during two periods; shortly after ice-off (spring) and in the middle of the growth season (summer). We aimed to understand the distribution of Arctic epilithic diatoms in relation to water chemistry gradients during the two seasons, to investigate their incorporation into lake sediments and to assess their applicability as palaeoenvironmental indicators. Diatoms were correlated with nutrients in the spring and alkalinity/major ions in the summer, when nutrients were depleted; approximately half of the variance explained was independent of spatial factors. When categorised by functional attributes, diatom seasonal succession differed among regions with the most obvious changes in inland lakes where summer temperatures are warmer, organic nutrient processing is prevalent and silicate is limiting. These conditions led to small, motile and adnate diatoms being abundant in inland lakes during the summer (Nitzschia spp., Encyonopsis microcephala), as these functional attributes are suited to living within complex mats of non-siliceous microbial biofilms. Seasonal succession in silica-rich lakes at the coast was less pronounced and assemblages included Tabellaria flocculosa (indicating more acidic conditions) and Hannaea arcus (indicating input from inflowing rivers). The nitrogen-fixing diatom Epithemia sorex increased from the coast to the ice sheet, negatively correlating with a gradient of reactive nitrogen. The presence of this diatom in Holocene sediment records alongside cyanobacterial carotenoids during arid periods of low nitrogen delivery, suggests that it is a useful indicator of nitrogen limitation. Nitzschia species appear to be associated with high concentrations of organic carbon and heterotrophy, but their poor representation in West Greenland lake sediments due to taphonomic processes limits their palaeoenvironmental application in this region. Proportions of epilithic taxa in lake sediment records of coastal lakes increased during some wetter periods of the Holocene, suggesting that snowpack-derived nutrient delivery may offer diatom taxa living at lake margins a competitive advantage over planktonic diatoms during the “moating” ice melt period. Thus, further research investigating linkages between epilithic diatoms, snowpack and nutrient delivery in seasonally frozen lakes is recommended as these taxa live on the ‘front-line’ during the spring and may be especially sensitive to changes in snowmelt conditions.  相似文献   

16.
Inferences of past climate from the fossil record in lakes rely on the accurate quantification of a relationship of fossilizing organisms to their environment. Whereas the relationship of diatoms to water chemistry parameters has been modeled in many systems, few studies adequately address the relationship of diatoms to physical properties, such as water depth or hydrology, that may be more directly tied to climate. We examined the composition of modern diatoms in surface sediments of 75 isolated ponds (mostly Carolina bays) of the Atlantic Coastal Plain to: (1) assess the influence of physical and chemical variables on the distribution of diatoms among ponds of the region, and (2) develop a model that predicts hydroperiod (a measure of pond permanence) from diatom assemblages. We constructed two hydroperiod calibration models: the first infers hydroperiod from the weighted-average optima and tolerances of taxa along the hydroperiod gradient, the second bases inferences on the hydroperiod estimates of compositionally similar samples. Both approaches incorporate a-priori and post-hoc tests of assumptions often inherent in the construction of transfer functions. Diatom assemblage composition had strong, approximately linear relationships to hydroperiod, water depth, and calcium concentration in non-metric multidimensional ordination space; effects of other variables, including pH, were non-linear or ambiguous. Overall, the assemblages reflected the dilute, acidic chemical characteristics of bays. The assemblages contained differing abundances of euterrestrial, benthic and planktonic taxa, depending on a pond's susceptibility to drying. A weighted-averaging regression model based on taxon-specific hydroperiod optima generated adequate, unbiased hydroperiod inferences from diatom species composition (r2 = 0.81). This model may be used to infer past drought episodes from fossil diatom assemblages at appropriate sites on the Atlantic Coastal Plain.  相似文献   

17.
The seasonality of physical, chemical, and biological water variables is a major characteristic of temperate, dimictic lakes. Yet, few investigations have considered the potential information that is encoded in seasonal dynamics with respect to the paleolimnological record. We used a one-year sequence of diatoms obtained from sediment traps and water samples, as well as the sedimentary diatom record covering the past ca. 1000 years in Bates Pond, Connecticut (USA), to investigate which variables influence the seasonal distribution of diatoms and how this can be used for the interpretation of the fossil record. The seasonal patterns in diatom assemblages were related to stratification and, to a lesser extent, to nitrate, silica, and phosphorus. During mixing periods in spring and autumn, both planktonic and benthic species were collected in the traps, while few lightly silicified, spindle-shaped planktonic diatoms dominated during thermal stratification in summer. Changes in fossil diatom assemblages reflected human activity in the watershed after European settlement and subsequent recovery in the 20th century. A long-term trend in diatom assemblage change initiated before European settlement was probably related to increased length of mixing periods during the Little Ice Age, indicated by the increase of taxa that presently grow during mixing periods and by application of a preliminary seasonal temperature model. We argue that the analysis of seasonal diatom dynamics in temperate lakes may provide important information for the refinement of paleolimnological interpretations. However, investigations of several lakes and years would be desirable in order to establish a more robust seasonal data set for the enhancement of paleolimnological interpretations.  相似文献   

18.
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hoare, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake-wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4–16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (26–31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta). Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.  相似文献   

19.
Surface sediments from 23 lakes on Svalbard were analysed for diatoms. About 182 taxa were found but samples generally have a low richness, with the majority of sites dominated by benthic genera such as Fragilaria, Navicula, and Achnanthes. Centric Cyclotella species occur at only three sites. Modern relationships between diatom abundance and water chemistry and other environmental variables were explored numerically and a preliminary transfer function for pH was developed. Lakes fell into three groups on the basis of their diatom assemblages: (1) high pH, high cation, high conductivity sites characterised by Amphora libyca, (2) shallow sites with relatively high nutrient values characterised by Fragilaria species, and (3) more acid and dilute sites with high amounts of snow cover in the catchments characterised by small Achnanthes species and Navicula digitulus. Five sediment cores representing the recent past were also analysed for diatoms. Three shallow sites were dominated by Fragilaria species throughout the period represented by the cores and no shifts in inferred pH were found. At two deeper sites (Arresjøen, Birgervatnet) major assemblage shifts are found which are unrelated to independent evidence for atmospheric contamination. Early (ca. 1200 AD) changes found at both sites are possibly related to the onset of the ‘Little Ice Age’. Later changes are neither synchronous nor similar in nature and might be best explained as individual responses to the recovery from the ‘Little Ice Age’ and subsequent climatic warming.  相似文献   

20.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号