首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper outlines the seismic vulnerability of rural stone masonry buildings affected by the 2015 Gorkha earthquake sequence. Summary of field observation is presented first and empirical fragility curves are developed from the detailed damage assessment data from 603 villages in central, eastern and western Nepal. Fragility curves are developed on the basis of 665,515 building damage cases collected during the post-earthquake detailed damage assessment campaign conducted by Government of Nepal. Two sets of fragility functions are derived using peak ground acceleration and spectral acceleration at 0.3 s as the intensity measures. The sum of the results highlights that stone masonry buildings in Nepal are highly vulnerable even in the case of low to moderate ground shaking. The results further indicate that in the case of strong to major earthquakes, most of the stone masonry buildings in Nepal would sustain severe damage or collapse.  相似文献   

2.
Throughout history, dry-stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.  相似文献   

3.
邀山阁是一座4层砖石结构楼阁,目前西北角墙体倾斜严重且墙体、石柱存在竖向裂缝。基于保护邀山阁的需要,应用等效体积单元(RVE)进行墙体的有限元分析,通过调整弹性模量和优化有限元模型来模拟砌体带裂缝时的工作状态;在应力值及其变化值比较大的关键部位选取了26个控制点,进行应力包络分析;在合理的安全系数和游客荷载最不利工况下,得到了邀山阁游客的合理控制数量。本研究将有益于古建筑的长期保护和合理开发利用。  相似文献   

4.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

5.
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads.Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers.This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada.The old historic center of Quebec City has been selected as a typical study area.The standard fragility analysis combines the inelastic spectral displacement,a structure-dependent earthquake intensity measure,and the building damage state correlated to the induced building displacement.The proposed procedure consists of a three-step development process:(1) mechanics-based capacity model,(2) displacement-based damage model and(3) seismic demand model.The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings.Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER.Hazus shows the highest probability of the occurrence of no to slight damage,whereas the highest probability of extensive and complete damage is predicted with ELER.This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.  相似文献   

6.
7.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

8.
Studies oriented to restoration and conservation of historical monumental buildings have recourse to structural analysis as a way to investigate the genuine structural features of the construction, to better understand its present condition and actual causes of existing damage, to estimate its safety conditions and to determine necessary remedial measures. Based on this background, this paper discusses on the seismic vulnerability of masonry fortresses by means of an analysis methodology based on three different analytical procedures, according to an increased knowledge of the structure. As a relevant case study the Albornoz fortress, a 14th stone masonry construction located in central Italy, was selected. Initially, the strategy proposed to perform this task was aimed at testing and developing an expeditious and non-destructive procedure to evaluate both the seismic vulnerability and the main mechanical properties of the different masonry typologies. The macroscale structural behavior of the fortress was then evaluated through a nonlinear static analysis (pushover) and a more simple approach based on the kinematic theorems of the limit analysis. From this point of view, by comparing the capacity of the construction to withstand lateral loads with the expected demands resulting from seismic actions, these methods provided a highly effective means of verifying the safety of the masonry structure and its vulnerability to extensive damage and collapse.  相似文献   

9.
混凝土小砌块约束砌体结构,由于加入芯柱、构造柱、圈梁,使结构整体性提高,因此具有较好的抗震性能和发展前景。通过整理94个混凝土小砌块约束砌体墙片试验数据,考虑权重,统计了混凝土小砌块约束砌体墙片延性系数,给出了延性系数与高度、延性系数比与高宽的关系,同时给出了层间开裂位移角、层间极限位移角公式,以及接近倒塌时混凝土小砌块约束砌体结构层间位移的计算公式,并与一个八层混凝土小砌块约束砌体结构的动力时程分析结果进行了对比,结果显示,最大误差在顶层,为17.7%,因此,所提层间位移计算公式是可以满足工程精度需要的,为混凝土小砌块约束砌体结构基于性态的抗震分析提供参考。  相似文献   

10.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

11.
This paper reports the results of several on-site investigations carried out by the authors in the last 20 years in central Italy (Umbria, Marche, Emilia and Abruzzo regions) on masonry wall panels. The use of stone and brickwork masonry has been common for centuries not only for rural residences but also for public and religious buildings. In many areas, where the stone was abundant, stone became the material of choice for all constructions. However from rubble stone to perfectly squared stones, the mechanical properties may highly differ. Test results are reported with an accurate survey and analysis of the masonry typology and mechanical characterization was performed according to ASTM standards and consisted of measurements of shear properties. The paper also reports the experimental results of full-scale tests conducted on brickwork walls using different bonding patterns, mortar types and brick dimensions. These data were recorded in terms of shear strength, elastic properties and deformation capacity and are of critical importance for design, reinforcement or retrofit purposes in earthquake-prone areas. All tests were conducted on site from pre-existing undamaged wall panels. Finally, test results are compared with existing standards and indicate that masonry shear strength is sometimes overestimated by the Italian Building Code.  相似文献   

12.
强震作用下砌体结构倒塌过程仿真分析   总被引:6,自引:0,他引:6  
四川汶川地震中大量砌体房屋倒塌,造成巨大人员伤亡。为研究和预防砌体结构震害,本文概述了多层砌体房屋的主要震害特点,研究了砌体结构地震倒塌分析方法、失效单元与结构倒塌等关键技术问题。利用动力有限元程序LS-DYNA模拟了砌体结构的倒塌过程。仿真计算的结果与真实倒塌过程吻合较好,说明通过合理选取计算参数和计算模型,可以对这种特殊的复杂破坏过程进行模拟分析和仿真。通过再现倒塌过程,发现了结构在强震作用下的薄弱环节,为提高砌体结构抗震性能研究、建立结构防倒塌机制提供了有力的技术支撑。  相似文献   

13.
Almost all historical minarets in Turkey were constructed using cut stone, masonry blocks or combination of these two materials. The structural and geometrical properties of each masonry minaret, or slender tower structure, depend on many factors including the structural knowledge and applications at the time of construction, experience of the architect or engineer, seismicity of the region, and availability of construction materials in that area. Recent earthquakes in Turkey have shown that most masonry minarets in high seismic regions are vulnerable to structural damage and collapse. In this study, in order to investigate the dynamic behavior of historical unreinforced masonry minarets, three representative minarets with 20, 25, and 30 m height were modeled and analyzed using two ground motions recorded during the 1999 Kocaeli and Duzce, Turkey earthquakes. The modal analyses of the models have shown that the structural periods and the overall structural response are influenced by the minaret height and spectral characteristics of the input motion. The dynamic displacement and axial stress time histories are computed at the critical points on the minarets. During recent earthquakes, most minaret failures occurred above the base of the structure. Consistent with the observed response, the largest stresses were calculated at the same location.  相似文献   

14.
Traditional non-reinforced masonry walls are particularly prone to failure when subjected to out-of-plane loads and displacements caused by earthquakes. Moreover, singularities such as openings in fa?ades may trigger local collapse, for either in-plane or out-of plane motion. Bearing in mind all the former limitations, STAP, with the scientific support of ICIST and LNEC, has been developing a reduced intrusiveness seismic strengthening methodology for traditional masonry structures. The technique consists in externally applying Glass Fibre Reinforced Polymer (GFRP) composite strips to one or both faces of walls. Connection between GFRP composite strips and masonry substrate is enhanced through specifically detailed anchorages or confinement connectors. This technique has been developed and studied through an extensive series of experimental tests, which are briefly reviewed. This paper focuses more deeply on the latest experimental program, aimed at the characterization of the masonry-GFRP composite interface behaviour. This testing program comprised 29 masonry specimens, strengthened with externally bonded GFRP composite strips with anchorages. The testing variables were the number and spacing of anchorages as well as the loading history type: monotonic or repeated. Results clearly show that the use of anchorages dramatically enhances bond behaviour and that its number and spacing have a significant effect on deformation capacity and a less pronounced effect on strength. Based on experimental evidence, this paper also provides a calculation model and ULS safety assessment procedure for out-of-plane strength of reinforced masonry walls. This calculation model leads to interaction curves on strengthened masonry walls subjected to compression and out-of-plane flexure.  相似文献   

15.
The intrinsic vulnerability of masonry structures to seismic events makes structural health monitoring of the utmost importance for the conservation of the built heritage. The development of piezoresistive bricks, also termed smart bricks, is an innovative technology recently proposed by the authors for the monitoring of such structures. Smart bricks exhibit measurable variations in their electrical properties when subjected to external loads or, alternatively, strain self-sensing capabilities. Therefore, the deployment of a network of smart bricks into a masonry structure confers self-diagnostic properties to the host structure. In this light, this paper presents a theoretical investigation on the application of smart bricks to full-scale masonry structures for seismic assessment. This includes the study of the convenience of providing electrical isolation conditions to the sensors, as well as the effectiveness of smart bricks when installed into either new constructions or in pre-existing structures. Secondly, numerical results are presented on the seismic analysis of a three-dimensional masonry building equipped with a network of smart bricks. Finally, in order to map the strain field throughout the structure exploiting the outputs of a limited number of sensors, an interpolation-based strain reconstruction approach is proposed.  相似文献   

16.
The determination of mechanical properties of masonry walls is a fundamental pre‐requisite for the characterization of the seismic response of traditional buildings, which helps on the definition of adequate rehabilitation and strengthening procedures. This paper presents a testing campaign carried out in the Cedros region of Faial Island, Azores, hit by the July 98 earthquake, aiming at the determination of physical and mechanical properties of stone masonry walls, namely the mass density and Young's modulus. The paper describes the developed testing techniques as a contribution to the study and the preservation of traditional masonry buildings. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic behavior of unreinforced masonry buildings is typically characterized by premature brittle collapse mechanisms that can cause serious consequences for the protection of human lives and for the preservation of historical and cultural heritage. Structural health monitoring can be a powerful tool enabling a quick post-earthquake assessment of the structure's performance, but its applications are still scarce as a consequence of the severe limitations affecting off-the-shelf sensing technologies, in terms of local nature of the measurements, costs, as well as long-term behavior, installation, and maintenance. To overcome some of these limitations, the authors have recently proposed a new sensing technology, called “smart brick,” that is a durable clay brick doped with stainless steel microfibers, working as a smart strain sensor for masonry buildings. This paper presents the first full-scale application of smart bricks, used for detecting and localizing progressive earthquake-induced damage in an unreinforced masonry building subjected to shaking table tests. Smart bricks are employed to detect changes in load paths on masonry walls, comparing strain measurements acquired after each step of the seismic sequence with those referring to the undamaged structure. Experimental results are interpreted using a 3D finite element model built to reproduce the shaking table tests. Overall, the results demonstrate that the smart bricks can effectively reveal local permanent changes in structural conditions following a progressive damage, therefore being apt for earthquake-induced damage detection and localization.  相似文献   

18.
The awareness and preservation of the vernacular heritage and traditional construction techniques and materials is crucial as a key element of cultural identity. However, vernacular architecture located in earthquake prone areas can show a particularly poor seismic performance because of inadequate construction practices resulting from economic restraints and lack of resources. The horizontal diaphragms are one of the key aspects influencing the seismic behavior of buildings because of their major role transmitting the seismic actions to the vertical resisting elements of the structure. This paper presents a numerical parametric study adopted to understand the seismic behavior and resisting mechanisms of vernacular buildings according to the type of horizontal diaphragm considered. Detailed finite element modeling and nonlinear static (pushover) analyses were used to perform the thorough parametric study aimed at the evaluation and quantification of the influence of the type of diaphragm in the seismic behavior of vernacular buildings. The reference models used for this study simulate representative rammed earth and stone masonry vernacular buildings commonly found in the South of Portugal. Therefore, this paper also contributes for a better insight of the structural behavior of vernacular earthen and stone masonry typologies under seismic loading.  相似文献   

19.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The definition of adequate simplified models to assess the in‐plane load‐bearing capacity of masonry piers, in terms of both strength and displacement, plays a fundamental role in the seismic verification of masonry buildings. In this paper, a critical review of the most widespread strength criteria present in the literature and codes to interpret the failure modes of piers (rocking, crushing, bed joint sliding or diagonal cracking) are proposed. Models are usually based on an approximate evaluation of the stress state produced by the external forces in a few points/sections and on its assessment with reference to a limit strength domain. The aim of the review is to assess their reliability by discussing the hypotheses, which they are based on (assumed stress states; choice of reference points/sections on which to assess the pier strength; characteristics of the limit strength domain) and to verify the conditions for their proper use in practice, in terms of both stress fields (depending on the geometry of the pier, boundary conditions and applied loads) and types of masonry (i.e. regular brick masonry vs rubble stone masonry). In order to achieve these objectives, parametric nonlinear finite element analyses are performed and different experimental data available in the literature are analysed and compared. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号