首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An elasto-plastic model is proposed for modeling the constitutive behavior of the interface between gravelly soils and structural materials. This model is based on the two-surface plasticity formulation and it is compatible with the concept of critical state soil mechanics. The model requires the same set of eight calibration parameters for predicting the monotonic and cyclic responses of both loose and dense interfaces. The model simulates cyclic densification, shear degradation and the effects of normal pressure, soil density, and stress path. The performance of the proposed constitutive model is validated by tests data under different normal stresses and boundary conditions.  相似文献   

2.
A modification to the nonlinear Pastor–Zienkiewicz–Chan (PZC) constitutive model without any change in the number of model parameters is introduced in order to simulate stiffness degradation of dense sands at dynamic loading. The PZC model is based on generalized plasticity and was verified by good prediction of liquefaction and undrained behavior of saturated sand. The PZC is a robust model that can predict drained dynamic behavior of sands, especially stiffness increase in loose sand at reloading of dynamic loading. Yet, this model does not show stiffness degradation of dense sand at reloading. The modification is made through modifying the stress memory factor, H DM, which is multiplied by the plastic modulus, H L. This modification does not influence reloading behavior of loose sand. The modified PZC model is verified via results of drained cyclic tests. Two cyclic triaxial tests on loose and dense specimens, along with two cyclic plane strain tests on dense sand are utilized for validation. The model simulation shows that the modified PZC model is able to predict the stiffness degradation of dense sand at reloading well.  相似文献   

3.
张嘎  张建民  吴伟 《岩土力学》2008,29(6):1530-1534
建立了可描述粗粒土单调和循环力学特性的一个亚塑性本构模型。基于亚塑性理论的基本框架,引入临界状态参数,建立了一个新的粗粒土亚塑性模型,给出了数学公式及参数确定方法。采用该模型对粗粒土单调和循环加载试验进行了模拟和预测。该模型无需判断加卸载、参数较少、易于三维化,能够较全面地描述单调和循环荷载作用下粗粒土的主要力学特性,如强度与围压的非线性关系,胀缩规律与围压相关、卸载体缩、体变随加载过程累积等主要体变特性等。  相似文献   

4.
In the field of constitutive modelling of soil behaviour, optimisation techniques have been mostly employed as a calibration tool, particularly when several model parameters lack clear physical meaning. In this paper, however, a procedure based on a Hill-Climbing optimisation algorithm is presented as a form of improving the performance of constitutive models. Specifically, a simple cyclic nonlinear elastic model, which is shown to be unable to simulate adequately the damping ratio measured under small and large strain amplitudes, is modified by applying the Hill-Climbing technique to the determination of a new relationship describing the unloading/reloading behaviour of soil under cyclic loading. The performance of the proposed model is assessed by evaluating its parameters based on three distinct sets of empirical damping ratio curves and computing the corresponding error in their simulation. It is shown that the introduction of the new unloading/reloading expression formulated based on the outcome of the optimisation procedure increases substantially the precision of the constitutive model.  相似文献   

5.
This paper presents a kinematic hardening model for describing some important features of natural stiff clays under cyclic loading conditions, such as closed hysteretic loops, smooth transition from the elastic behavior to the elastoplastic one and changes of the compression slope with loading/unloading loops. The model includes two yield surfaces, an inner surface and a bounding surface. A non-associated flow rule and a kinematic hardening law are proposed for the inner surface. The adopted hardening law enables the plastic modulus to vary smoothly when the kinematic yield surface approaches the bounding surface and ensures at the same time the non-intersection of the two yield surfaces. Furthermore, the first loading, unloading, and reloading stages are treated differently by applying distinct hardening parameters. The main feature of the model is that its constitutive equations can be simply formulated based on the consistency condition for the inner yield surface based on the proposed kinematic hardening law; thereby, this model can be easily implemented in a finite element code using a classic stress integration scheme as for the modified Cam Clay model. The simulation results on the Boom Clay, natural stiff clay, have revealed the relevance of the model: a good agreement has been obtained between simulations and the experimental results from the tests with different stress paths under cyclic loading conditions. In particular, the model can satisfactorily describe the complex case of oedometric conditions where the deviator stress is positive upon loading (compression) but can become negative upon unloading (extension).  相似文献   

6.
张平阳  夏才初  周舒威  周瑜  胡永生 《岩土力学》2015,36(12):3354-3359
循环加-卸载岩石本构模型是预测压气储能洞室长期稳定性的关键,但目前还没有适用的本构模型,因此,提出了一种能够描述岩石循环加载和卸载的本构模型。鉴于岩石在循环作用下损伤不断累积,将基于Weibull分布的岩石损伤软化模型进行拓展,并用内变量疲劳本构模型描述每个循环的初始模量和卸载模量的变化,进而得到循环加-卸载作用下的岩石本构模型,然后将该模型与现有的试验结果进行对比。该模型物理意义明确,涉及的参数较少,且便于拟合。提出的循环加-卸载下岩石本构模型对试验数据拟合效果较好,能较准确地反映循环荷载上、下限值对应的轴向应变,也能反映出循环内部变形模量衰减的趋势。该模型的成功建立为循环加-卸载下岩石本构模型的研究提供了新思路。  相似文献   

7.
Several researchers have reported that the mean effective stress of unsaturated soils having a relatively high degree of saturation gradually decreases under fully undrained cyclic loading conditions, and such soils can be finally liquefied like saturated soils. This paper describes a series of simulations of fully undrained cyclic loading on unsaturated soils, conducted using an elastoplastic model for unsaturated soils. This model is a critical state soil model formulated using effective stress tensor for unsaturated soils, which incorporates the following concepts: (a) the volumetric movement of the state boundary surface containing the critical state line owing to the variation in the degree of saturation; (b) the soil water characteristic curve considering the effects of specific volume and hydraulic hysteresis; and (c) the subloading surface concept for considering the effect of density. Void air is assumed to be an ideal gas obeying Boyle's law. The proposed model is validated through comparisons with past results. The simulation results show that the proposed model properly describes the fully undrained cyclic behavior of unsaturated soils, such as liquefaction, compression, and an increase in the degree of saturation. Finally, the effects of the degree of saturation, void ratio, and confining pressure on the cyclic strength of unsaturated soils are described by the simulation results. The liquefaction resistance of unsaturated soils increases as the degree of saturation and the void ratio decrease, and as the confining pressure increases. Furthermore, the degree of saturation has a greater effect on the liquefaction resistance than the confining pressure and void ratio. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A hierarchical concept is proposed for the development of constitutive models to account for various factors that influence behaviour of (geologic) materials. It permits evolution of models of progressively higher grades from the basic model representing isotropic hardening with associative behaviour. Factors such as non-associativeness and induced anisotropy due to friction and cyclic loading, and softening are introduced as corrections or perturbations to the basic model. The influence of these factors is captured through non-associativeness manifested by deviation from normality of the plastic strain increments to the yield surface, F. Details of four models: isotropic hardening with associative behaviour, isotropic hardening with non-associative behavioural anisotropic hardening and strain-softening with a damage variable are presented. They are verified with respect to laboratory multiaxial test data under various paths of loading, unloading and reloading for typical soils, rock and concrete. The proposed concept is general, yet sufficiently simplified in terms of physical understanding, number of constants and their physical meanings, determination of the constants and implementation.  相似文献   

9.
An elastoplastic constitutive model is proposed for saturated sands in general stress space using the middle surface concept (MSC). In MSC, different features of stress–strain response of a material are divided into different pseudo‐yield surfaces. The true‐yield surface representing the true response is established by using various links between the yield surfaces. In this MSC sand model, several well‐known features of sand response are represented by three different pseudo‐yield surfaces, which are developed in a simple and straightforward way. These features include the critical state behaviour, the effects of state parameter, unloading and reloading plastic deformation, the influence of fabric anisotropy, and phase transformation line related behaviour. Finally, the model predictions and test results are compared for two different types of sands under a variety of loading conditions and good comparisons are obtained. The application of MSC to saturated sand modelling shows the versatility of MSC as a general concept for modelling stress–strain response of materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Liu  Zhiyong  Xue  Jianfeng  Ye  Jianzhong 《Acta Geotechnica》2021,16(9):2791-2804

New excavation or tunnelling affects the stress state of soils in ground. The change of stress state due to excavation may affect the cyclic behaviour of soils. Cyclic loading, such as traffic and earthquake loading, induced ground deformation may be greater than expected if such effect is not considered. A series of cyclic triaxial tests were performed on Sydney sand with different relative densities. The effect of unloading sequence on deformation of the sand under cyclic loading was simulated by reducing lateral stress in steps between loading cycles. The dependence of strain accumulation on the magnitude of confining pressure reduction and on unloading stress paths was studied. The results indicate that the sand has a memory of stress history and the stress history of such unloading enlarges the strain accumulation during the subsequent cycles, and the greater the reduction of lateral stress, the greater the accumulated strain. Under cyclic loading, the accumulated axial strain could increase nonlinearly or linearly with the ratio of unloading magnitude to initial mean effective stress, depending on the stress state before cyclic loading. The unloading stress paths have limited effects on the final accumulated strain if the initial and final stress states are the same. The variation of strain accumulation direction attributes to the change of average stress ratio resulting from lateral stress reduction, but hardly depends on relative density and unloading stress paths. The strain accumulation direction after unloading roughly agrees with the modified Cam Clay flow rule.

  相似文献   

11.
剪胀性对于砂土,尤其是中密以及密实砂土,是一个非常显著的特性。相变线是剪胀性砂土的特征曲线,能够反映砂土的围压以及初时孔隙比对变形特性的影响。本文在边界面塑性理论的框架内,把相变状态参量引入到剪胀方程以及塑性硬化模量中,建立了一个能够描述砂土剪胀性以及循环特性的本构模型。本模型采用一套参量可以模拟不同初时孔隙比、不同围压、排水(或不排水)条件下单调(或循环)加载的应力-应变特性。验证表明本模型数值计算与试验结果相吻合。  相似文献   

12.
Developing the pore water pressures in loose to medium sands below the water table may lead to liquefaction during earthquakes. The simulation of liquefaction (cyclic mobility and flow liquefaction) in sandy soils is one of the major challenges in constitutive modeling of soils. This paper presents the simulation of sand behavior using a critical state bounding surface plasticity model (Dafalias and Manzari’s model, 2004) during monotonic and cyclic loading. The drained, undrained, and cyclic triaxial tests were simulated using Dafalias and Manzari’s model. The simulation results showed that the model predicts behavior of sand, reasonably well. Also, for CSR?<?0.2, number of cycles for liquefaction is significantly increased. The residual strength of Babolsar sand is produced when it is deformed to an axial strain of 20 to 25%.  相似文献   

13.
李建民  滕延京 《岩土力学》2011,32(Z2):463-468
结合大量不同土性土体的回弹再压缩试验、模型试验,提出再加荷比、再压缩比率的概念,并在此基础上得出了土体再压缩变形的基本规律:当再加荷量为卸荷量的20%时,土样产生的再压缩变形量已接近回弹变形量的40%~50%;当再加荷量为卸荷量的80%时,再压缩变形量与回弹变形量大致相等,则此时回弹变形完全被压缩;当再加荷量与卸荷量相等时,再压缩变形量大于回弹变形量,且再压缩变形的增大程度与土性有关。可见在土样的再压缩过程中,在初始阶段再压缩变形增长速率较大,之后增长速率随着加荷量的增加反而逐渐降低。由此得出土体的再压缩变形发展规律为两阶段线性规律,这一规律具有工程实用意义:基底以下土体的回弹再压缩变形对于减小主群楼之间的差异沉降是一种有利因素;再压缩变形的发展规律为建筑物基底以下土体的回弹再压缩变形而产生的沉降计算提供了依据  相似文献   

14.
李镜培  刘耕云  周攀 《岩土力学》2022,43(3):582-590
在实际工程中,土体往往因卸载、再加载等复杂应力路径而处于超固结状态,而现有的圆孔扩张问题的计算模型往往不能反映超固结土中剪胀、软化等一些特殊性质。为了解决这一问题,基于相似性原理和统一硬化(UH)模型,结合相关联的流动法则和大变形理论,采用相似求解技术求解了超固结土不排水扩张问题的半解析解答。通过理想化算例分析了圆孔扩张挤土产生的应力和孔压响应,并通过分析不同超固结比OCR的土体应力路径的变化规律,讨论了UH模型的适用性。结果表明:对于轻超固结土,空腔周围土体孔压在塑性区沿径向单调递减,随着OCR增大,塑性区内孔压分布呈现出“S”形的趋势,孔壁附近的孔压逐渐减小,孔壁周围甚至出现负孔压。随着OCR增大,压力?扩张曲线收敛变慢。在扩孔过程中正常固结土一直处于剪缩硬化阶段。而对于超固结土,土体则经历了临界状态→剪胀硬化阶段→临界(特征)状态→剪缩硬化阶段。该研究成果不仅丰富了相似求解技术的应用,而且为超固结土中桩基承载力、隧道围岩变形预测和原位测试参数等岩土工程问题的计算提供了理论依据。  相似文献   

15.
徐晗  程展林  泰培  潘家军  黄斌 《岩土力学》2015,36(5):1322-1327
岩土工程数值计算中粗粒土常采用邓肯-张本构模型,为了验证该模型在轴向加载、卸载、侧向加载等复杂应力路径条件下的适用性,进行了粗粒土的三轴试验获取其力学特性及本构模型参数;根据相似性原理制作了堆石坝的离心模型试样,并采用与三轴试验同样级配与粒径的粗粒土进行复杂应力路径的堆石坝离心模型试验,试验中通过改变离心加速度模拟加载、卸载,利用上游蓄水模拟坝体的侧向加载;采用ABAQUS对离心模型试验进行三维数值模拟,并研究了模型箱侧壁摩擦系数与土体的初始应力对数值结果的影响。通过比较离心模型试验与数值模拟成果,表明土体的初始弹性模量对计算结果影响较大,初始应力应选择自重作用下的应力场;邓肯-张本构模型能较好地描述堆石坝的加载应力路径,而模拟卸载应力路径有一定的差异,需要改进邓肯-张本构模型中卸载模量的确定方法。  相似文献   

16.
A three-dimensional elastoplastic soil constitutive model capable of capturing the response of granular soils under low-frequency cyclic loading is introduced and verified. The model is piecewise linear with a hyperbolic stress-strain relationship. The size of the hysteresis loop is controlled using different scaling factors with a shift in the backbone curve at load reversal. The model introduces a new algorithm to better capture the soil’s response upon reloading for plane strain. Model verification with experimental results at different scales shows that the model has good capabilities in capturing the response of granular soils under low frequency cyclic loading.  相似文献   

17.
The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay–steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay‐steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Among the constitutive models for rock fractures developed over the years, Barton's empirical model has been widely used. Although Barton's failure criterion predicts peak shear strength of rock fractures with acceptable precision, it has some limitations in estimating the peak shear displacement, post‐peak shear strength, dilation, and surface degradation. The first author modified Barton's original model in order to address these limitations. Barton proposed his model for degradation of fracture asperities in unloading, reloading, and shear displacement reversal based on just one cyclic direct shear test. In this study, a database of results of 18 cyclic direct shear tests available in the literature was collected and analyzed. Modifications were made to Barton's original model (in terms of fracture cyclic shearing) to make it consistent with the modified model proposed by the first author. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a constitutive model for describing the stress-strain response of sands under cyclic loading. The model, formulated using the critical state theory within the bounding surface plasticity framework, is an upgraded version of an existing model developed for monotonic behaviour of cohesionless sands. With modification of the hardening law, plastic volumetric strain increment and unloading plastic modulus, the original model was modified to simulate cyclic loading. The proposed model was validated against triaxial cyclic loading tests for Fuji River sand, Toyoura sand and Nigata sand. Comparison between the measured and predicted results suggests that the proposed modified model can capture the main features of cohesionless sands under drained and undrained cyclic loading.  相似文献   

20.
适用于砂土循环加载分析的边界面塑性模型   总被引:1,自引:0,他引:1  
董建勋  刘海笑  李洲 《岩土力学》2019,40(2):684-692
基于临界状态土力学框架,建立了一个适用于砂土排水循环加载的边界面塑性模型。采用了考虑虚拟峰值应力比的偏应变硬化准则,初始加载阶段应力点位于边界面上,反向加载阶段以历史最大屈服面作为边界面,同时实现了对密砂软化现象的模拟和对历史所受最大应力的记忆。边界面采用修正的椭圆形,引入考虑密度与应力水平的状态相关剪胀函数,采用非相关联流动法则和以应力反向点作为映射中心的径向映射准则。模型仅有10个参数,通过常规三轴试验即可确定,并且使用一套参数可以模拟不同围压、密度的单调和循环加载情况。分别对饱和砂土的单调、循环排水三轴试验进行模拟,结果表明,该模型能够合理地反映饱和砂土排水条件下的应力-应变特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号