首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na+, K+ and Ca2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl thermal water with cool, low-Cl components. A 350 to 390°C component with Cl ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K+, Na+, Ca2+ and Mg2+ concentrations, but produces insufficient Cl or F for measured concentrations in the warm springs. The ratio of aNa/aH, and Cl are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl waters involved in mixing.The cold waters collected from southwestern Yellowstone Park have δD values ranging from −118 to −145 per mil and δ18O values of −15.9 to −19.4 per mil. Two samples from nearby Island Park have δD values of −112 and −114 per mil and δ18O values of −15.1 and −15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on ascent to the surface. Many of the hot springs with higher δD values may contain in addition a significant amount of high-D, low-Cl, acid-sulfate or steam-heated meteoric water. Mixing models, Cl content and isotopic compositions of thermal springs suggest that 30% or less of a deep thermal component is present. For example, the highest-temperature springs from Three Rivers, Silver Scarf and Upper Boundary Creek thermal areas contain up to 70% cool meteoric water and 30% hot water components, springs at Summit Lake and Middle Boundary Creek spring 57 are acid-sulfate or steam-heated meteoric water; springs 27 and 48 from Middle Boundary Creek and 49 from Mountain Ash contain in excess of 50% acid-sulfate water; and Three Rivers spring 46 and Phillips could result from mixing hot water with 55% cool meteoric water followed by mixing of acid-sulfate water. Extensive dilution by cool meteoric water increases the uncertainties in quantity and nature of the deep meteoric, thermal component.  相似文献   

2.
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220°C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ± 10°C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to 220°C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282°C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 × 107 cal/s.  相似文献   

3.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

4.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

5.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

6.
Application of various chemical geothermometers and mixing models indicate underground temperatures of 260°C, 280°C and 265°C in the Geysir, Hveravellir and Landmannalaugar geothermal fields in Iceland, respectively. Mixing of the hot water with cold water occurs in the upflow zones of all these geothermal systems. Linear relations between chloride, boron and δ18O constitute the main evidence for mixing, which is further substantiated by chloride, silica and sulphate relations in the Geysir and Hveravellir fields.A new carbonate-silica mixing model is proposed which is useful in distinguishing boiled and non-boiled geothermal waters. This model can also be used to estimate underground temperatures using data from warm springs. This model, as well as the chloride-enthalpy model and the Na-Li, and CO2-gas geothermometers, invariably yield similar results as the quartz geothermometer sometimes also does. By contrast, the Na-K and the Na-K-Ca geothermometers yield low values in the case of boiling hot springs, largely due to loss of potassium from solution in the upflow. The results of these geothermometers are unreliable for mixed waters due to leaching subsequent to mixing.  相似文献   

7.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

8.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

9.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   

10.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

11.
Stable isotope compositions (δD, δ18O and δ34S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The δD and δ18O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in δ18O–δD diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m3 volcanic water/day) and indicate a water residence time of 1–2 decades. The δ34S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.  相似文献   

12.
Archean komatiites, high-Mg basalts and tholeiites from the North Star Basalt and the Mount Ada Basalt formations of the Talga-Talga Subgroup, Warrawoona Group, Pilbara Block, Western Australia, define a linear correlation on the normal143Nd/144Nd vs.147Sm/144Nd isochron plot. The data give an age of 3712 ± 98 Ma and initialεNd(T) of +1.64 ± 0.40. The 3712 ± 98 Ma date is consistent with the regional stratigraphic sequence and available age data and the SmNd linear array may be interpreted as an isochron giving the eruption age of the Talga-Talga Subgroup. An alternative interpretation is that the isochron represents a mixing line giving a pre-volcanism age for the Subgroup. Consideration of geochemical and isotopic data indicates that the true eruptive age of the Talga-Talga Subgroup is possibly closer to about 3500 Ma. Regardless of the age interpretation, the new Nd isotopic data support an existence of ancient LREE-depleted reservoirs in the early Archean mantle, and further suggest that source regions for the Pilbara volcanic rocks were isotopically heterogeneous, withεNd(T) values ranging from at least 0 to +4.0.  相似文献   

13.
The primary isotopic characteristics of alkaline granites are often obscured by secondary processes enhanced by their unusual chemical compositions. This is true for radiogenic as well as for stable isotopes. For example, the 87Sr/86Sr ratios can vary drastically in closed systems because of very high Rb/Sr ratios and can also be easily modified by direct or indirect interaction with continental crust because of low Sr concentrations. Moreover, the frequent occurrence of the granitic massifs as hypovolcanic complexes increases the probability of interaction with meteoric waters which is a common source of important isotopic variability.The investigation of oxygen isotope systematics in alkaline acidic rocks from various environments shows the18O content of their quartz to be highly invariable, and the δ18O values to be close to the mantle range of values. This is due to the resistance of quartz to isotopic exchange, which makes it a good tracer of primary isotopic composition. If we eliminate the quartz δ18O values for which interaction with meteoric water is well documented (five samples), the total range of variation (seventeen samples) is from 6.0 to 7.3‰ relative to SMOW. The values can easily be accounted for by, and correspond to, equilibrium with mantle-type material in a temperature range of 1200-800°C. If we consider possible effects of fractional crystallization, this temperature range can probably be reduced to its lower limit which is much more likely for rocks of acidic composition.The present oxygen isotope study strongly supports an origin for alkaline anorogenic granites from mantle-dominated sources.  相似文献   

14.
During two expeditions in the Danakil depression (Ethiopia), water samples were collected from: (a) hot springs in Dallol, Salt Plain, in the north of the depression; (b) cold and hot springs around Lake Giulietti; and c) Lake Giulietti.The isotopic results indicate: the water from Dallol hot springs is enriched in18O by isotopic exchange with the rocks as has been observed in many other geothermal areas of the world; b) the isotopic composition of the Lake Giulietti water changes with depth, probably as a consequence of a seasonal stratification; c) the springs in the Lake Giulietti region contain waters which result from the mixing of local meteoric water with a brine, or with lake waters.  相似文献   

15.
A geochemical study of thermal and cold springs, stream waters and gas emissions has been carried out in the Mt. Amiata geothermal region.The cold springs and stream waters do not seem to have received significant contribution from hot deep fluids. On the contrary, the thermal springs present complex and not clearly quantifiable interactions with the hot fluids of the main geothermal reservoir.The liquid-dominated systems in the Mt. Amiata area, like most of the high-enthalpy geothermal fields in the world, are characterized by saline, NaCl fluids. The nature of the reservoir rock (carbonatic and anhydritic), and its widespread occurrence in central Italy, favor a regional circulation of “Ca-sulfate” thermal waters, which discharge from its outcrop areas. Waters of this kind, which have been considered recharge waters of the known geothermal fields, dilute, disperse and react with the deep geothermal fluids in the Mt. Amiata area, preventing the use of the main chemical geothermometers for prospecting purposes. The temperatures obtained from the chemical geothermometers vary widely and are generally cooler than temperatures measured in producing wells.Other thermal anomalies in central Italy, apart from those already known, might be masked by the above-mentioned circulation. A better knowledge of deep-fluid chemistry could contribute to the calibration of specific geothermometers for waters from reservoirs in carbonatic rocks.  相似文献   

16.
The minerals of basic and acidic rocks from the volcano-sedimentary sequence in the Huelva area, Spain, Iberian Pyrite Belt, display an extendedδ18O enrichment. Quartzδ18O values from quartz-keratophyres vary from +10.5 to +17.0 and feldsparδ18O values from +14.4 to +16.0. For the spilite or spilitized doleritesδ18O values vary from +9.9 to +13.4 for feldspar, from +6.4 to +9.8 for chlorite, from +3.7 to +4.3 for ilmenite and from +13.6 to +14.0 for quartz, but pyroxene exhibits magmatic values, from +5.3 to +6.1 with an exception at +7.5. The chloriteδD values vary from −34 to −43‰.This is attributed to hydrothermal alteration with seawater enriched inδ18O by circulation through sediments.The temperatures of interaction determined from isotopic fractionations between minerals range from 400° to 520°C.CalculatedδD andδ18O values for water in equilibrium with the minerals at isotopic temperatures range from −16 to +5 and from +8.3 to +12.8, respectively.A model of circulation of seawater through a pile of sedimentary rocks and then through basaltic rocks is proposed to explain the high18O compositions of the rocks from the Huelva District. Water/rock mass ratios calculated from this model range between 0.3 and 0.7 for the determined range of temperatures.  相似文献   

17.
The Campi Flegrei (Naples, Campanian Plain, southern Italy) geothermal system is hosted by Quaternary volcanic rocks erupted before, during and after the formation of the caldera that represents one of the major structural features in the Neapolitan area. The volcanic products rest on a Mesozoic carbonate basement, cropping out north, east and south of the area. Chemical (major, minor and trace elements) and stable isotope (C, H, O) analyses were conducted on drill-core samples recovered from geothermal wells MF-1, MF-5, SV-1 and SV-3, at depths of ˜ 1100 to 2900 m. The study was complemented by petrographic and SEM examination of thin sections. The water which feeds the system is both marine and meteoric in origin. Mineral zonation typical of a high-temperature geothermal system exists in all the geothermal wells; measured temperatures in wells are as high as ˜ 400 °C. The chemical composition of the waters suggests the existence of two reservoirs: a shallow reservoir (depth < 2000 m) fed by seawater that boiled at 320 °C and became progressively diluted by steam-heated local meteoric water during its ascent; and a deeper reservoir (depth > 2000 m) of hypersaline water. The drill-cores are mainly hydrothermally altered volcanics of trachy-latitic affinity, but some altered pelites and limestones are also present. Published Na, Mg and K concentrations of selected geothermal waters indicate that the hydrothermal fluids are in equilibrium with their host rocks, with respect to K-feldspar, albite, sericite and chlorite. The measured δ18O(SMOW) values of rocks range from +4.3 to + 16.5%. The measured δD(SMOW) values range from − 79 to − 46%. The calculated isotopic composition of the fluids at equilibrium with the samples vary from + 1 to + 8.3%. δ18O and from − 52 to + 1%. δD. The estimated isotopic composition of the waters at equilibrium with the studied samples confirmed the existence of two distinct fluid types circulating in the geothermal system. The shallower has a marine water signature, while the deeper water has a signature consistent both with magmatic and meteoric origins. In the latter case, the recharge of this aquifer likely occurs at the outcrop of the Mesozoic Limestones surrounding the Campanian Plain; after infiltration, the water percolates through evaporitic layers, becoming hypersaline and D-depleted.  相似文献   

18.
Discontinuous measurements of the isotopic composition of surface water samples of the Garda lake carried out between 1998 and 2006 showed almost constant δ18O, δD and d-excess values through time. During 2006 and 2007 monthly vertical profiles of water samples were collected in the northernmost section of the lake, not far from the main inflow (Sarca river) to check whether there was any detectable influence from this inflowing river and whether there was a vertical isotopic stratification of the lake water. The isotopic measurement of water samples from the vertical profiles yielded isotopic values which were almost equal to those obtained from surface waters showing no detectable effect of the inflowing river water and no isotopic vertical stratification. The attempt to evaluate the evaporation rate of lake water by means of current models was totally unsuccessful. Despite the marked summer warming of the surface layer no isotopic fractionation related to evaporation processes could be detected. This anomalous behaviour may be related to the large amount of spring and summer precipitation characteristic of this area. The water balance of the lake calculated according to the amount of the inflowing water (Sarca river water plus rain water on the lake plus 20% of the precipitations on the whole catchment basin) and to the amount of outflowing water (Mincio river) showed a large imbalance, the river outflow alone resulting on average, during the last decade, at least double the inflow. To explain this imbalance of the lake, a large recharge by concealed groundwater is suggested: its isotopic composition should be quite close to the mean isotopic composition of precipitations over that area. This would be in agreement with the almost constant isotopic composition of both surface and deep waters and with the lack of vertical isotopic stratification. A few measurements of the tritium concentration carried out on lake water show values that are considerably higher than modern tritium values either in precipitation or in the Sarca river water: these results are in good agreement with the hypothesis of a recharge of the lake by deep aquifers.  相似文献   

19.
Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending onshore–offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments.Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid.Chemical geothermometers (Na/Li, Na–K–Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K–Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C.Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.  相似文献   

20.
Variation in13C/12C and18O/16O ratios in the shell carbonate of several species of land snails was studied along a climatic gradient in semi-arid to arid areas in the southern Levant.13C was found to be enriched in snails from communities having plants with a C4 photosynthetic pathway. Depleted δ13C values were found in areas with high mean annual rainfall, apparently due to higher input of metabolic CO2 as a result of greater snail activity. Shell carbonate δ18O values show a weak relation to the δ18O values of rainwater. The shell δ18O values are enriched by 2–8‰ relative to isotopic equilibrium with environmental waters. Enrichment is suggested to result from metabolic effects on body water (with lower activity producing greater enrichment) but evaporation could also be a factor. Consistent differences in both13C and18O were found among species and may relate to the time when shell deposition occurs. As with most paleoenvironmental indicators, the application of shell isotopes is complicated by the multiplicity of controls of isotopic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号