首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the tidal creeks of the southeastern United States, the numerically and ecologically dominant macrobenthic organisms are typically oligochaetes. Due to their relatively small size and difficult taxonomy, little is known about the short-term and seasonal changes in the oligochaetes of tidal creeks. This study presents a report of the spatial and temporal changes of the oligochaete taxa within and between two tidal creeks in southern South Carolina, at monthly intervals over a 13-month period. These changes are framed within the reference of monthly changes in benthic chlorophylla, sediment composition, and porewater ammonia, as well as in the perspective of seasonal changes in the entire tidal creek macrobenthic community. The most abundant oligochaete found in this study was the tubificidMonopylephorus rubroniveus, followed by the naidParanais litoralis and the tubificidsTubificoides heterochaetus andT. brownae. All of the oligochaetes exhibited strong month-to-month and spatial changes, indicative of changes in water quality and sediment habitat characteristics (e.g., low dissolved oxygen, high benthic chlorophylla). There were significant correlations between the abundance of most species and either benthic chlorophylla concentration or the silt-clay fraction of the sediment. Looking at short-term changes in this rapidly changing component of the macrobenthic community provides insight not only into the ecology of the oligochaetes, but also into the changes in the tidal creek ecosystem and their potential effects on other biota.  相似文献   

2.
The effect of temperature and salinity on numbers of luminescent bacteria present in waters of the Mystic (Conn.) River estuary was evaluated. Counts decreased with decreasing salinity; none were detected at freshwater stations. A population maximum of 35 per ml was noted at the highest salinity station (30±2‰). Highest counts were observed during winter and spring and lowest numbers occurred during summer and fall months. Isolates (111) were identified and compared with previously-described luminescent bacteria; i.e.,Beneckea (Vibrio) harveyi, Photobacterium (V.) fischeri, P. phosphoreum, andP. leiognathi. All species were isolated but distinct seasonal differences were noted.P. (V.) fischeri andB. (V.) harveyi represented 93% of the luminous population on an annual basis. Only the former was found during the period December through March (highest count 7 per ml) whileB. (V.) harveyi was the dominant species noted between May and October (maximum count 11 per ml).P. leiognathi andP. phosphoreum were found only during July and August as 7% of the total luminous population. All isolates grew at NaCl concentrations between 6 and 30‰; none grew below 6‰  相似文献   

3.
The dominant plant in Humboldt Bay salt marshes in Spartina densiflora, a species of cordgrass apparently introduced from South America. At several salt marshes and restoration sites around Humboldt Bay, distribution of this plant has increased significantly. We investigated the relative contributions of vegetative tiller production and seed germination to the establishment and expansion of S. densiflora. Lateral spread of plants surrounded by competitors were compared to areas without competing plant species. Plants growing in areas without competitors had significantly higher rates of vegetative expansion (p<0.0001). Viable seed production, germination rates, seedling survivorship, and growth of adult plants were measured in six salinity treatments. Approximately 1,977±80 viable seeds are produced per plant (0.25–0.5 m2). The number of germinating seeds was inversely related to increases in salinity. Salinity treatments between 19‰ and 35‰ produced significantly lower germination rates than salinities of 0–18‰ (p<0.0001). Seedling survivorship was 50% at ≤4‰ and 8–14% at ≥11‰. Lateral expansion of adult, greenhouse-grown plants occurred in all salinity treatments, with modest decreases in the highest salinity treatments (p<0.05). Our findings indicate that S. densiflora expands primarily by vegetative expansion, and lateral tillers are produced by throughout the year. Spartina densiflora produces prolific amounts of seed, but recruitment in mature salt marshes may be limited by competitors and higher salinities. At restoration sites, planting of native species such as Salicornia virginica, Distichlis spicata, or Jaumea carnosa may prevent monospecific stands of S. densiflora from developing.  相似文献   

4.
Five stations on the lower Saint John River, a complex multibasin estuary, were sampled semiquantitatively for zooplankton at biweekly intervals for one year, and qualitatively over a 4-year period. Planktonic Crustacea were dominated by the true estuarine copepods,Acartia tonsa andEurytemora affinis and the euryhaline marine copepodsOithona similis andPseudocalanus minutus. Atypical estuarine forms, confined to a lower fiord-like basin with salinity of 20‰, were the amphipod,Parathemisto abyssorum and the mysidErythrops erythrophthalma. River flows were highly variable from year to year. Certain basins function as lakes in some years and estuaries in other years, causing extreme zooplankton community fluctuations, and succession patterns dependent on salinity rather than season. On occasion freshwater zooplankters maintained viable populations at unusually high salinities (ca. 5‰). Vertical and horizontal distributions of zooplankters indicate that the estuary in fact comprises two systems: a true estuary in the upper reaches and the surface waters at the lower end, and a fiord in a subsidiary basin in the lower end.  相似文献   

5.
Crabs (Grapsidae,Sesarma) are the dominant macrofaunal group of mangrove forest soils in northern Australia. Little is known about the ecology of these crabs or the factors that influence their distribution in mangrove forests. Pitfall traps were used to sample grapsid crabs in the Murray River estuary in north Queensland. Sampling was conducted at five sites along a salinity gradient from <1‰ at upstream sites to >35‰ at the river mouth. At each site, trapping was done in both low and high intertidal forests. We characterized the sediments at each site by measuring percent sand, silt, clay and organic matter, Eh, pH, and soil pore-water salinity. Four species of grapsids dominated the crab fauna along the Murray River (Sesarma semperi-longicristatum, S. messa, S. brevicristatum, andS. brevipes). Distinct zonation patterns were found along the salinity gradient and between high and low intertidal forests.S. messa was dominant in high intertidal, downstream forests, high and low intertidal forests in the middle to downstream portion of the river, and in low intertidal forests in the central reach of the river.S. brevipes was dominant in both low and high intertidal zone forests at low salinity upstream sites.S. brevicristatum was most abundant in the central reaches of the river and only in the high intertidal zone.S. semperi-longicristatum was found only in the low intertidal zone, downstream forest. Subsequently, tests of salinity tolerances of these crabs were carried out in the laboratory. These indicated very wide tolerances over salinities from completely fresh to hypersaline (60‰). The osmoregulatory abilities of the crabs were also found to vary. However, neither their salinity tolerance nor osmoregulatory ability adequately explain the zonation patterns were measured in the field. For example,S. brevicristatum had the most restricted distribution, but it had the second broadest salinity tolerance and osmoregulatory ability. Sediment characteristics explained a significant amount of the variation in abundance for two of the crab species. Pore-water salinity provided no explanatory power for any of the species. Individual species abundances are probably influenced by additional factors such as interspecific competition and predation.  相似文献   

6.
The growth, morphology, and chemical composition ofHydrilla verticillata, Myriophyllum spicatum, Potamogeton perfoliatus, andVallisneria americana were compared among different salinity and light conditions. Plants were grown in microcosms (1.2 m5) under ambient photoperiod adjusted to 50% and 8% of solar radiation. The culture solution in five pairs of tanks was gradually adjusted to salinities of 0, 2, 4, 6, and 12‰. With the exception ofH. verticillata, the aquatic macrophytes examined may be considered eurysaline species that are able to adapt to salinities one-third the strength of sea water. With increasing salinity, the inflorescence production decreased inM. spicatum andP. perfoliatus, yet asexual reproduction in the latter species by underground buds remained constant. Stem elongation increased in response to shading inM. spicatum, while shadedP. perfoliatus had higher concentrations of chlorophylla. In association with high epiphytic mass, chlorophylla concentrations in all species were greatest at 12‰. The concentration of sodium increased in all four species of aquatic macrophytes examined here, indicating that these macrophytes did not possess mechanisms to exclude this ion. The nitrogen content (Y) of the aquatic macrophytes tested increased significantly with higher sodium concentration (X), suggesting that nitrogen may be utilized in osmoregulation (Y = X × 0.288 + 6.10, r2 = 0.71). The tolerance ofV. americana andP. perfoliatus to salinity was greater in our study compared to other investigations. This may be associated with experimental methodology, whereby macrophytes were subjected to more gradual rather than abrupt changes in salinity. The two macrophytes best adapted to estuarine conditions in this study by exhibiting growth up to 12‰, includingM. spicatum andV. americana, also exhibited a greater degree of response in morphology, tissue chemistry (including chlorophyll content and total nitrogen), and reproductive output in response to varying salinity and light conditions.  相似文献   

7.
Food habits of two species of dolichopodid fly larvae, from two Gulf Coast oligohaline tidal marshes, were analyzed from monthly collections taken between June 1979 and May 1980. Larvae ofPelastoneurus abbreviatus Loew andThinophilus frontalis Van Duzee, taken from aJuncus roemerianus Scheele dominated marsh, fed predominantly on oligochaetes and nematodes.Pelastoneurus abbreviatus, collected in a nearbySpartina cynosuroides (L.) Roth marsh, also fed on oligochaetes but consumed more polychaetes than nematodes. By being predators and prey in turn, these larvae serve in the transfer of energy between benthic, aquatic, and terrestrial components of the marsh, system.  相似文献   

8.
Salinity fluctuation has been proposed as an important determinant of estuarine fish distribution. To test this idea, we compared distribution, behavioral preference and physiological sensitivity of two juvenile estuarine fishes, spot (Leiostomus xanthurus) and croaker (Micropogonias undulatus), with respect to salinity change. In field collections, spot: croaker ratios were positively correlated with salinity variation. Subsequent behavioral observations revealed that croaker tend to cross a 10‰ salinity gradient less often than spot. We proposed that energetic costs of salinity adaptation may be higher for croaker, resulting in the observed avoidance behavior. Oxygen consumption rates over rapid salinity fluctuations showed no significant differences in metabolic response between species, although there was some indication that sensitivity changes with fish size. Apparently, juvenile spot and croaker are well-equipped to withstand extreme changes in salinity. We conclude that environmental factors correlated with salinity change may be responsible for distribution differences between these two abundant species.  相似文献   

9.
Zoeae of three species of temperate zone fiddler crabs, Uca pugnax, U. minax, and U. pugilator, were reared in the laboratory. The zoeae of each species were placed individually in artificial salinity gradients and observed for specific salinity preferences. Each species of zoeae displayed a salinity preference that reflected the salinity patterns of the adult crabs of the same species. Zoeae of U. pugnax and U. pugilator, like the adult crabs, displayed a preference for higher salinities (i.e., 20.6‰±3.5 and 21.5‰±3.0, respectively). Zoeae of U. minax, like the adult crabs, displayed a preference for lower salinities (i.e., 9.8‰±2.9).  相似文献   

10.
The salinity of interstitial water (i.e., the salinity of the free soil water) was examined at 11 equidistant stations along a transect on a Mississippi tidal marsh dominated byJuncus roemerianus andSpartina cynosuroides. Changes in the nearby surface water (e.g., bay water) were reflected in the changes in interstitial water salinity. The salinity of interstitial water was usually higher, varying between 2.5 and 15.8‰ from February 1975 through January 1976, than the salinity of the nearby surface water which ranged from 0.0 to 11.5‰. Following a long period of high salinity in the bay and sound (exceeding 14‰), the salinity of the interstitial water increased to a maximum of 16.8‰ in October. The salinity increased as the distance of the sampling station from the source of the flood water increased. Mean interstitial wate salinity across the marsh studied was within 10‰ which did not seem to influence the marsh plant zonation occurring on the marsh.  相似文献   

11.
From 1977 to 1980, samples of barnacles were collected (as opportunities arose) from 61 subtidal locations (mostly oyster beds) around Chesapeake Bay, Maryland. Three species were identified from the area.Balanus improvisus dominated, comprising 83% of the 8,231 barnacles identified, and was collected at all locations but one. It occurred over a collection salinity range of 0.8‰ to 17.9‰.Balanus subalbidus (14% of the barnacles identified) was collected over the same salinity range, but mainly in lower salinity waters.Balanus eburneus was scarce (2% of the barnacles identified) and was collected at higher salinities (8.5‰ to 17.1‰).  相似文献   

12.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

13.
Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.  相似文献   

14.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

15.
The tolerance of post yolk-sac American shad Alosa sapidissima larvae to salinities typically seen in estuaries was assessed experimentally. Sixteen-day-old Hudson River (experiment I) and 35-d-old Delaware River (experiment II) larvae were held for 8 d and 9 d respectively in low (0–1‰), medium (9–11‰), and highly (19–20‰) brackish water, and mortality and growth rates were measured. Growth rates did not vary significantly among salinity treatments. Mortality in experiment I did not vary significantly among salinity treatments however, in experiment II, mortality was zero at 10‰ but higher and statistically indistinguishable between 0‰ and 20‰ In experiment II relative condition increased with salinity. These results imply that estuarine salinities neither depress growth rates nor elevate mortality rates of larval American shad when compared with freshwater conditions. We conclude that ecological factors other than the physiological effects of salinity have played more important roles in the evolution of the upriver spawning and nursery preference shown by this species.  相似文献   

16.
Environmental characteristics were measured and recorded in the Skagit Marsh, a brackish intertidal marsh on Puget Sound, Washington. Four transects were placed perpendicular to a known gradient of increasing salinity which began with fresh water at the bank of one of the outlets of the Skagit River and reached a surface water salinity of 22‰ at a point alongshore 5 km north of the outlet. The environmental characteristics which were measured varied along gradients (soil texture, organic carbon in fines, soil column temperature, free soil water salinity) or had a patchy distribution (soil redox potential, soil macro-organic matter). Growth and production vary across the marsh. The maximum aboveground standing crop (1,742 g m?2 dry weight) was measured at a site with 0–4‰ free soil water salinity, dominated by the sedgeCarex lyngbyei. In more saline areas (8–12‰), the bulrushScirpus americanus was dominant and standing crop values dropped to a third of the maximum. Species performance varied in a complex manner as did the environment.C. lyngbyei had diminished growth and decreased standing crop in areas where salinity was higher.S. americanus was equally productive in low elevation, high salinity sites and in high elevation, low salinity sites. An increase in shoot density for dominant species occurred in saline areas as individual shoot weights and leaf areas decreased. Because species responded differently, environmental variation was magnified in the population and community responses of the marsh vegetation.  相似文献   

17.
This study aimed to investigate the population of annelida communities in relation to environmental factors and heavy metals accumulated in sediments of the Gorgan Bay. The pollution load index and potential ecological risk (PER) were calculated. The results indicated mean concentrations (ppm) of heavy metals were (mean ± SD) Pb: 11.5 ± 4.88, Cu: 18 ± 8.83, Zn: 42 ± 22.15, Ni: 29.20 ± 14.68, Co: 10.56 ± 14.68, As: 7.77 ± 2.12, Sr: 1,449 ± 902.59 and V: 26.64 ± 10.25. Considering PER, sediments of the Gorgan Bay had low ecological risk. Based on abundance data, dominant species were Streblospio gynobranchiata, Nereis diversicolor, Tubificoides fraseri and Tubificidae unknown, respectively. Results of redundancy analysis displayed that T. fraseri and N. diversicolor were associated with high values of Sr. All the species were negatively correlated with As. There were positive correlation between S. gynobranchiata and N. diversicolor with values of clay, salinity, depth and silt. The present study provided the relative importance of heavy metals and environmental variables which partly assist in structuring assemblages of annelida in a transitional area.  相似文献   

18.
During the 14-month collection period,Hemicyclops always appeared as naupliar stages andSaphirella as immature copepodite stages at 3 stations in the middle and lower estuary.Hemicyclops nauplii were abundant during late spring and summer, with a seasonal maximum of 7448/m3 in late spring at the upstream station.Saphirella stages were observed throughout the year, but higher population densities generally occurred in the summer and fall; the highest density was 3413/m3. Both species were usually more abundant upstream than downstream. The larvae may be life stages of a single bottom-dwelling species,Hemicyclops adhaerens.  相似文献   

19.
This two-part study examined the benthic macrofaunal community in Delaware salt marsh impoundments having partial tidal restriction. The first part compared abundance, diversity, and taxonomic composition in three habitat types in impoundments—creeks, vegetated creek banks, and ponds—to those found in natural marshes. Impoundment effects were present but were habitat-specific. Abundances were higher in natural marsh creeks than in impoundment creeks, and diversities were higher in impoundment ponds than in natural marsh ponds. Vegetated bank communities in impoundments were about 50% insects and arachnids and 50% oligochaetes, while natural bank communities were primarily oligochaetes and the polychaeteManayunkia aestuarina. This is likely due to the decrease in flooding of the vegetated high marsh caused by partial impoundment. Pond and creek community composition also showed impoundment effects: in comparison with natural marshes, impoundments had higher proportions of the burrowing anemoneNematostella vectensis, nemerteans, andTubificoides sp. oligochaetes and lower proportions of the oligochaeteClitellio arenarius. The second part of the study compared benthic macrofauna in an impoundment before, during, and after the water level was lowered so that some bottom sediments were exposed and some covered with just a few centimeters of water for several weeks. During this event, macrofaunal abundances were reduced and the community shifted from being dominated by annelids, anemones, and nemerteans toward one dominated by annelids and insects. About 6 wk after reflooding, persistent effects of this disturbance were still suggested by greatly increased abundances and 96% dominance by one species of oligochaete,Paranais litoralis. Impoundment management plans calling for periods of sediment exposure or very low water may want to consider the potential for strong and persistent effects on the macrofaunal community.  相似文献   

20.
Molluscs were collected monthly for a year from two low salinity (0–9‰) intertidal marshes dominated by the macrophytesJuncus roemerianus orSpartina cynosuroides in St. Louis Bay, Mississippi. TheJuncus marsh had lower soil organic matter, higher pH and was more frequently inundated than theSpartina marsh. Eight species of gastropods were abundant and dominated in the higherSpartina marsh, while three bivalve species were dominant in theJuncus marsh. Of the common species,Succinea ovalis, Vertigo ovata andDeroceras laeve are gastropods of terrestrial origins;Geukensia demissa granosissima (bivalve) andMelampus bidentatus (gastropod) are euryhaline estuarine species and the remaining gastropods (Detracia floridana, Littoridinops palustris, Onobops jacksoni) and bivalves (Polymesoda caroliniana, Cyrenoida floridana) are brackish species. Most species were capable of continuous recruitment (based on size class analysis), but exhibited peak activity in particular seasons. Bivalve abundance correlated to temperature, and gastropod abundance was negatively correlated to soil pH. These correlations reflect the influence of flooding regime at the two sites. Biomass was greater in theJuncus marsh because of the increased presence of the large-bodiedPolymesoda. Polymesoda represented >90% and >50% of the total biomass in theJuncus andSpartina (except summer) marshes respectively but always <-5% of the individuals collected. Gastropod biomass was the same in both marshes. Species diversity (H′) was greater inSpartina except for summer months. TheJuncus marsh always exhibited greater species richness. Evenness (J′) determined seasonal changes in diversity (H′). Similarity values (Cz) were always quite low, with highest values in spring In contrast to faunal studies from Gulf and East Coast salt marshes, we found 1) fewer species, 2) communities comprised of unique species combinations, 3) greatest mean densities in summer, and 4) potentially less productivity by the molluscs of our sites. These mollusc communities exhibit structural characteristics that emphasize the unique ecotonal nature of the oligohaline marshes within which they are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号