首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The area of the Solani-Ganga interfluve, which lies between 29°16′N to 30°15′N latitude and 77°45′E to 78°15′E longitude was undertaken for the present study using LANDSAT imagery of band 5 and 7 and the false colour composite on the scale of 1:250,000 in combination with aerial photographs (1:25,000). Major geomorphic units, e.g., Siwalik Hills. Solani-upper alluvial plain, Solani lower alluvial plain, ‘Tarai’ and Ganga alluvial plain were delineated on LANDSAT and colour composite. Sample areas selected from LANDSAT were studied on aerial photographs in details and soil physiography relationship was developed. The soils on Siwalik hills are classified as Orthents. The soils of the pledmont plain and the recent terraces of Solani river and its tributaries were Psamments, Orthents, Fluvents, Orchrepts and Aquepts. The soils of upper alluvial tract of the Ganga plain is mostly Ustalfs with inclusion of Aqualfs, while the strong hydromorphic Tarai tract consists of partly Aquepts, Ochrepts (cultivated) and partly of Aquolls, Ustolls and Ustalfs (under forest). The present study aims to pin point the nature of soil relief relationship with the help of LANDSAT imagery and aerial photographs and diagnose the intensity of the depletion of soil resources (by prevailing factors like swift run off of biykderfed torrents, fast-flow of ground water, soil creep, mass wasting) through field studies and then treat them with ecological dose of soil conservation. For agronomic development of the region, it is worked out that the present crop-combination and crop-rotation systems should be slightly modified according to its ecosystem to prevent the depletion of soil nutrients.  相似文献   

2.
Usefulness of Landsat imagery in discerning major arid zone soils has been studied. Results are based on analysis of Band 7 coverage and Band 5 and 7 for a limited area followed by a comparison of these with the known soil distribution as seen in Bikaner, Jodhpur and part of Jalore, Pali and Nagaur districts. Results show that at Band 7 the dominant course loamy Typic Camborthids in association with dunes could be recognised. Vegetation was found non-interfering though surface soil moisture variation of the period immediately following monsoon months (Sept.–Dec.) appeared to do so. Hardpan soils were identifiable largely by their associated features than by soil characteristics proper. Fine loamy typic Camborthids could not be recognised at series level and as a group also these could be identified only in post-monsoon period when the land is devoid of much of its vegetation cover. Saline areas could be recognised but those occurring in South-eastern tract were largely inseparable from adjoining shallow soils. For these, Band 5 image of monsoon months was quite satisfactory. For all other soils, Band 7 was better than Band 5. Though light brown sandy soils in association with dunes are the dominant formations, past evolutionary history and source rock variability have given considerable heterogeniety to the soil cover of the arid zone. Natural resource survey activity over the years has provided ground information for nearly 30 percent of Westren Rajasthan and this incidentally covers major soils of the area albeit with few exceptions. With the Landsat imagery now becoming accessible, it was thought befitting to see how far soil variations as recognised in the course of above surveys could be discerned from the Landsat. Some encouraging reports on the use of the Landsat or similar data in small cale soil mapping are available in literature (Kristof and Zachary, 1970; El-Baz, 1978; Everitt and Gerbermann 1977). In our own country also usefulness of this tool has been demonstrated by Krishnamurthy and Srinivanan (1973) and Hilwig (1975). Recently Bhandariet al; (1976) while working in northern part of arid zone have shown that soil salinity mapping could be attempted with the help of Landsat data.  相似文献   

3.
The Landsat (MSS and TM), SPOT (PLA and MLA) and IRS (LISS-I and LISS-II) images of crop free period (April, May), rainfed crop (October) and rabi irrigated crop (January, February) have been evaluated for their capabilities of mapping (1) primary salt affected soils: (slightly, moderately and severely) (2) saline water irrigated saline soils, (3) sodic water irrigated sodic soils and (4) salt affected soils due to tank seepage in the arid region of Rajasthan. The moderately and severe salt affected soils could be mapped with Landsat, (IRS LISS-I) and SPOT, images of any season. However, the summer season imagery provided maximum extent of salt affected soils. The LISS-II imagery also provided delineation of slightly salt affected soils in addition to the moderate and severely salt affected soils. The delineation of saline and sodic water irrigated areas was possible by using Landsat False Colour Composite for the January month by their characteristic reflectance, existing cropping pattern and the quality of irrigation water being used in the area. The IRS (LISS-II) and SPOT PLA images for the May month were also used for mapping of saline and sodic water irrigated soils.  相似文献   

4.
Lateritic soils of Mathamangalam, Kannur District, located in midlands of Kerala, were morphologically studied, characterized, classified and mapped at 1:50,000 scale using remote sensing techniques. The terrain of the study area being hilly and covered with perennial vegetation, soil-landscape model was applied. For this purpose physiographic information was inferred from SRTM DEM, Resourcesat-1 LISS-III satellite image and topographical maps. The interpreted units were validated in the field and characterized through soil-site examination, soil profile study and soil analysis. The study indicated that the lateritic soils of midlands of Kerala vary in physical, chemical and morphological properties in relation to micro-relief. Soils developed on moderately steeply sloping side slopes (15–30% slope) are deep, moderately well drained with gravelly clay textured, where as the soils developed on moderately slopping side slope (10–15% slope) are very deep and well drained. The soils of valleys are very deep, moderately well drained with fine texture. Very gently sloping (1–3%) laterite plateau tops have extremely shallow soils associated with rock outcrops. These soils mainly belong to Order Ultisols followed by Inceptisols and Entisols. These were further grouped up to Family and Series level by tentatively establishing seven soil series. This study helps in understanding the behaviour of lateritic soils of midlands of Kerala, which can be useful in generation of interpretative maps and in optimizing the land use.  相似文献   

5.
Validation of Indian National DEM from Cartosat-1 Data   总被引:1,自引:0,他引:1  
CartoDEM is an Indian National DEM generated from Cartosat-1 stereo data. Cartosat-1, launched in May, 2005, is an along track (aft ?5°, Fore +26°) stereo with 2.5 m GSD, give base-height ratio of 0.63 with 27 km swath. The operational procedure of DEM generation comprises stereo strip triangulation of 500?×?27 km segment with 10 m posting along with 2.5 m resolution ortho image and free—access posting of 30 m has been made available (bhuvan.nrsc.gov.in). A multi approach evaluation of CartoDEM comprising (a) absolute accuracy with respect to ground control points for two sites namely Jagatsinghpur -flat and Dharamshala- hilly; second site i.e. Alwar-plain and hilly with high resolution aerial DEM, (b) relative difference between SRTM and ASTERDEM (c) absolute accuracy with ICESat GLAS for two sites namely Jagatsinghpur-plain and Netravathi river, Western Ghats-hilly (d) relative comparison of drainage delineation with respect to ASTERDEM is reported here. The absolute height accuracy in flat terrain was 4.7 m with horizontal accuracy of 7.3 m, while in hilly terrain it was 7 m height with a horizontal accuracy of 14 m. While comparison with ICESat GLAS data absolute height difference of plain and hilly was 5.2 m and 7.9 m respectively. When compared to SRTM over Indian landmass, 90 % of pixels reported were within ±8 m difference. The drainage delineation shows better accuracy and clear demarcation of catchment ridgeline and more reliable flow-path prediction in comparison with ASTER. The results qualify Indian DEM for using it operationally which is equivalent and better than the other publicly available DEMs like SRTM and ASTERDEM.  相似文献   

6.
The problem of surveying watersheds for strategic planning in the Himalayan terrain has attracted the attention of the land surveyors recently. A small watershed in Surgad Catchment has been surveyed to select various parameters that determine soil loss, which can be studied using aerial photo-interpretation technique with a view to watershed management. Soil, slope, landuse and micro climatic factors have been used to delineate different morphogenetic categories. The result shows that on steeper slopes, well developed soils are found which indicates a high tolerance limits of these soils. In Himalayan terrain soils and vegetation are therefore, better indices of sediment losses than slopes. Small scale aerial photographs can be successfully used to judge the tolerance limits of soils in Himalayan terrain.  相似文献   

7.
This study was undertaken to prepare an inventory on soil erosion of a hilly river watershed — the Aglar watershed, part of Tehri Garhwal and Dehradun districts (U.P.), using terrain physiography and soil survey data obtained from interpretation and analysis of Landsat TM FCC (1:62,500 scale) and limited ground investigations. The watershed is divided into four broad physiographic units viz. higher Himalayas (> 2000m elevation); lower Himalayas (< 2000m elevation); river terraces and flood plains. Each physiographic unit has been further divided into subunits on the basis of aspects and landuse. Three major orders of soils viz. Inceptisols, Mollisols and Entisols were found in different physiographic units. Soil, and land properties of soilscape units viz. soil depth, texture, structure, slope, landuse and soil temperature regime were evaluated for soil-erosion hazard. The results indicate that in the whole watershed 19.13%, 45.68%, 26.51% and 7.92% areas have been found to be under none to slight, moderate, severe and very severe soil erosion hazard categories, respectively.  相似文献   

8.
Terrain Moisture Classification Using GPS Surface-Reflected Signals   总被引:1,自引:0,他引:1  
In this letter, a novel method of land-surface classification using surface-reflected global positioning system (GPS) signals in combination with digital imagery is presented. Two GPS-derived classification features are merged with visible image data to create terrain moisture classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, the use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping  相似文献   

9.
With the advent of Remote Sensing via Satellites, specially the LANDSAT providing a synoptic overview of our Earth, a powerful new tool aiding in regional terrain analysis for natural resources surveys is now available to earth scientistis. Many significant earth features identifiable on LANDSAT images help to update regional surveys. Sequential coverage is an added advantage. Based on terrain analysis using LANDSAT imagery, and utilising the principles of visual interpretation to develop satellite photo-analytical keys highlighting landforms, drainage features and the like it is possible to delineate hydromorphic units for groundwater studies on a regional scale. The paper highlights the utility of LANDSAT imagery interpretation in small scale hydromorphic mapping for groundwater studies by citing examples from North and Central India. The advantage of conjunctive use of satellite, aircraft ann ground data in enhancing survey results is mentioned. The known and expected hydrologic conditions in the different hydromorphic units mapped have been given. The study approach is relatively new in India, and can be very useful in planning regional groundwater exploration programmes. The method is speedy and economical. Possibilities of similar studies in a host of other areas of survey such as flood studies, erosion surveys add a new dimension to the study of our Earth.  相似文献   

10.
Soil mapping on the scale 1:50,000 was conducted in Tehri-Garhwal district of Uttar Pradesh using Survey of India Topographic maps and utilising aerial photographs of the area which were interpreted for demarcation of physiographic units, vegetation, drainage and other features relevant to soil development. Resulting soil map and soils and land use information have been helpful in presenting an optimum land use and management plan in the area keeping in view of the soils characteristics, terrain features and existing land use, Soils and physiographic interpretation in the area have highlighted significant soil-landscape relationships relevant to land utilization. The other factors responsible for soil formation which could be significant in the area i.e. climate and parent material were also taken into consideration apart from topography. Of all these factors topography was revealed to be the predominant factor governing soil formation in the area. Soil units mapped coincided with the physiographic units demarcated through aerial photo-interpretation. The area of the district could be divided into three climatic zones viz. (i) Cool temperate, (ii) Sub-tropical warm temperate and (iii) tropical following Kaushic (1962). It was noticed that in each climatic zone with the climate being almost uniform within the zone, irrespe tlve of variations in the parent material, soil development was markedly affected by topographly, variations which led to differences in soil characteristics particulary soil texture and amount of coarse fragments. In about 70 percent of the area of the district where slopes are steep to very steep, topography was revealed to be the dominant factor determining characteristic soil development. In the remaining part where slopes are moderate to gentle, parent material is the dominant factor followed by topography.  相似文献   

11.
提出一种基于SAIL模型的地表反射率修正方案,有效减小地形起伏的影响。通过引入太阳直射光的方向-方向反射与大气散射的半球-方向反射,遵循光路可逆原理对地表反射率进行几何修正,同时考虑地表自身热辐射对入瞳辐射的影响从而修正地表反射率,发展适用于SAIL模型的地表反射率修正模型。利用长常高速部分路段的实测植被理化参数及光谱信息对地形修正后的SAIL模型模拟精度进行对比分析,结果表明地形修正后SAIL模型有效提高SAIL模型模拟的植被冠层光谱精度,修正后SAIL模型可为后续南方地区定量遥感的应用提供更精确的数据支持。  相似文献   

12.
利用分形随机算法建立平地、丘陵和山地3种精细地形仿真场景,将DEM逐级重采样为不同网格间距,分析不同DEM网格间距对3种地形的重力近区地形改正误差影响。发现随着DEM网格间距的增加,近区地形改正误差随之增大。对于平地,使用1∶10 000的DEM,网格间距为5m仍能够满足规范要求;对于丘陵地,使用1∶5 000的DEM,网格间距为2.5m能够满足规范要求;对于山地,使用1∶1 000的DEM,网格间距1m能够满足规范要求。通过消费级无人机获取丘陵地精细地形,验证地形仿真的结论,同时说明消费级无人机能够应用于重力近区地形改正。  相似文献   

13.
基于遥感技术的干旱区土壤分类研究   总被引:6,自引:0,他引:6  
亢庆  张增祥  赵晓丽 《遥感学报》2008,12(1):159-167
以新疆艾比湖地区为研究区域,以ASTER和SPOT卫星数据为基础,探讨了干旱环境下基于土壤与景观关系的土壤遥感自动分类方法.首先,研究以实地调查资料和第二次全国土壤普查数据库为基础,结合遥感图像信息分析了试验区土壤类型与景观的关系.然后,基于遥感图像和地形数据提取了分类特征,并采用Jeffries-Matusita 距离分析建立了适用遥感分类的土壤分类系统和分类特征集.最后,采用最大似然法进行了自动分类.研究证明,基于遥感信息和地形数据提取的分类特征,可有效地区分试验区9类土壤和地表覆被,主要包括:盐碱化土壤、荒漠化土壤等,总体分类精度达到了90%左右.  相似文献   

14.
Landsat MSS data in the form of BW imagery were used to generate Soil Map of Punjab convering an area of about 5 million ha. MSS bands 2 and 4 (L4) were interpreted singly and combined to form a compostie interpretetion map with which field check, was translated in terms of soils. The abstraction level attained was Great Groups of Soil Taxonomy. The distribution of soils of Punjab, with Aridisols in the SW through Inceptisols in the Central zone, to Alfisols in the NE sectors suggested a strong geographic bias in their evolution. The major soils of the aridic zone (SW sectors of the state) are: Camborthids, Calciorthids, Torripsamments and Torrifluvents and of the Ustic zone (Central Punjab) are Ustochrepts and Haplustalfs (the most productive soils of the State), Ustipsamments and Ustifluvents. The salt affected soils are found interspersed with these soils. In the udic zone (NE fringe), Hapludalfs, Eutrochrepts, Udifluvents, Udorthents and Hapludolls are the major soil formations. The soil map reveals that about one-third of the total area of the state suffers from various soil problems, such as soil salinity and sodicity, water logging, and soil erosion. For increasing agricultural production, these soils need to be brought under the plough. The study leads to conclude that for quick and precise macro level land use planning, the use of Landsat imagery is imperative.  相似文献   

15.
Digital Elevation Models (DEMs) and their derivatives are routinely exploited for a wide range of planning and engineering applications such as land reclamation, calculation of cut-and-fill requirements for earth works or to determine other relevant geomorphological landscape parameters. The advent of computer (digital) manipulation of elevation data has opened up great possibilities for studying the geometry of our land surface in relation to physical factors such as climate, vegetation, soils and geology. This paper is concerned with the generation, testing and validation of DEM and its derived terrain parameters viz., contours, drainage pattern etc. using IRS-1C stereo pair over a part of Alwar district, Rajasthan, India. In particular, it reports on the results achieved using indigenously developed stereo - processing software along with standard GIS and terrain analysis package to derive DEM and associated terrain parameters of the study area. The results are encouraging when compared with Survey of India topographical maps at 1:50,000 scale in terms of point to point accuracy of DEM, data quality evaluation of orthoimage and higher order drainage delineation.  相似文献   

16.
The range biomass in three different soil types of Jodhpur district has been estimated from the computer print out of Landsat imagery. The total biomass in the younger alluvial soil varies from 36.1 to 35910.0 kg; in pipar soils it ranges between 23.2 to 21541.2 kg, and in Chirai soils total biomass varies from 26.6 to 6852.7 kg.  相似文献   

17.
The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.  相似文献   

18.
本文初步研究了遥感、GIS和制图一体化实用技术方法。对黄土丘陵区和沙漠地区TM数据进行了特征信息分析;给出了分层分类和GIS辅助分类结果;经模糊推理和人机交互修改,将提“纯”的遥感专题数据作为GIS的动态信息源,对GIS进行扩充与更新;最后在GIS支持下分层提取专题图并进行辅助制图。  相似文献   

19.
Optimal land use map of Kanholi area, part of Nagpur district,Maharashtra have been prepared using Satellite imagery in 1:1000,000 and 1:250,000 and aerial photographs in 1:60,000 scale with adequate ground checks. The Satellite imagery proved valuable information about landscape characteristics, land use, hydrology and other environmental features. The aerial photographs were used to prepare comparatively large scale land resource association maps in scale 1:60,000 on geomorphology, landuse, soil hydrology. Soil irrigability, land irrigability and land capability maps are also attempted after interpreting soils information collected during field studies. The utility of this technique in preparation of optimal land use map with associated limitations due to scale have been discussed in the paper.  相似文献   

20.
The Google Earth terrain model could prove beneficial for extraction of positional data in the future. At present, only an aging independent benchmark study (Potere, D., 2008. Horizontal position accuracy of Google Earth's high-resolution imagery archive. Sensors, 8, 7973–7981) provides constraints on positional accuracy for Google Earth imagery. In this investigation, we compared virtually traced positions against high-precision (<1 m) field measurements along three stratigraphic unconformity sub-sections in the Big Bend region to determine current positional accuracy for the Google Earth terrain model. A horizontal position accuracy of 2.64 m RMSEr was determined for the Google Earth terrain model with mean offset distance being 6.95 m. A vertical position accuracy of 1.63 m RMSEz with mean offset distance of 2.66 m was also calculated for the terrain model. Results suggest data extracted from the Google Earth terrain model could plausibly be used in future studies. However, we urge caution in using Google Earth data due to limited information disclosures by developers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号