首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Despite the gently dipping slopes (ca 1°), large-scale submarine slope failures have occurred on the mid-Norwegian continental margin (Storegga, Sklinnadjupet, Traenadjupet), suggesting the presence of special conditions predisposing to failure in this formerly glaciated margin. With a volume estimated between 2,400 and 3,200 km3 and an affected area of approximately 95,000 km2, the Storegga slide represents one of the largest and best-studied submarine slides of Holocene age known worldwide. Finite element modeling of slope failure indicates that a large (6.5 < Ms < 7.0) seismic triggering mechanism would not be sufficient to cause failure at more than 110 m below the seabed as observed for the slip planes at Storegga (northern sidewall). This implies that other factors (e.g., liquefaction, strain softening, gas charging, rapid burial) are needed to explain the occurrence of the Storegga slide with a deep surface of failure. In this paper, we discuss the importance of the compaction effect of rapidly accumulated sediments in the slide area. During compaction, sediment grains reorganize themselves, thereby, expelling pore water. Consequently, depending on sedimentation rate and permeability, excess pore pressures might result beneath less permeable sediments. Our modeling and cross-checking illustrate how excess pore pressure generation due to high sedimentation rate could explain the development of layers of weakness, and thus, how such a large slide might have been initiated in deep sediments. Using the highest sedimentation rate estimated in the area (36 and 27 m/kyr between 16.2 and 15 kyr BP), 1D modeling shows excess pore pressure values of around 200 kPa at a depth of 100 m below the seafloor 15 kyr BP and 60 kPa at a depth of 100 m at the time of the slide (8 kyr BP). Excess pore pressure apparently drastically reduced the resistance of the sediment (incomplete consolidation). In addition, 2D modeling shows that permeability anisotropies can significantly affect the lateral extent of excess pore pressure dissipation, affecting, that way, normally consolidated sediments far from the excess pore pressure initiation area.  相似文献   

2.
During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9–12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.  相似文献   

3.
库水位骤降时的滑坡稳定性评价方法研究   总被引:24,自引:5,他引:19  
刘新喜  夏元友  练操  张开鹏 《岩土力学》2005,26(9):1427-1431
三峡水库蓄水及水位波动,将极大地改变滑坡体内的水文地质条件,库水位骤降和暴雨入渗是导致滑坡的主要因素。库水位骤降时的滑坡稳定性评价是滑坡防治中的一个难题。根据三峡水库水位调控方案和库区滑坡地下水作用的力学模式,利用有限元模拟库水位从175 m骤降至145 m时的滑坡暂态渗流场。建立了渗透力作用下滑坡稳定性评价的不平衡推力法。研究表明:滑坡的渗透系数和库水位下降速度是影响滑坡稳定性的主要因素,当库区堆积层滑坡渗透系数小于0.864 m/d,库水位发生骤降为2 m/d。库水位骤降时滑坡稳定性降到最小的水位通常在175 m水位以下10~20 m处。其研究为库区 175 m水位滑坡治理提供了科学依据。  相似文献   

4.
Landslides located beside reservoirs tend to be unstable or are characterized by large deformation during the drawdown process. This has been accepted by many experts. In this paper, we use Qiaotou Landslide, which is located beside the Three Gorges Reservoir (TGR), as a typical case study to investigate and predict the deformation mechanism during the drawdown process of TGR in detail. According to field investigation, the landslide mass is mainly composed of thick, loose silt and clay mixed with fragments of rock. Bedrock is mainly composed of silty sandstone. Field and laboratory tests indicate that the landslide mass has a high permeability coefficient. If the water level declines fast, intense seepage force may result. Based on these data, we establish a three-dimensional geological model of Qiaotou Landslide by FLAC3D and perform a numerical simulation using the saturated–unsaturated fluid–solid coupling theory. For the simulation, we assume that the drawdown from 175 to 145 m takes place with a speed of 25 cm/day, which is based on the extreme water level regulation program of TGR. The simulation shows that this causes a significant deformation in the landslide mass and that the maximum displacement within the landslide is 24.2 cm. During the drawdown process, the maximum displacement zone is shifting from the upper part of the landslide where bedrock surface is steeper and thickness of loose deposits is less to the middle part of the landslide where bedrock surface is less steep and thickness of loose deposits is higher. The deformation mechanism indicates that in the early stage of the drawdown the deformation of the landslide mass is mainly caused by seepage and in the later stage mainly by consolidation.  相似文献   

5.
In this paper the development of a large-scale gravitational deformation involving the eastern lateral moraine of the Athabasca Glacier in Jasper National Park, Alberta, Canada, is described. Interpretation and analysis of sequential aerial photographs indicates that a 540-m-wide segment of the eastern lateral moraine began to deform in the early 1950s; however, significant movement only began in the late 1960s. Since then, the moraine has undergone progressive gravitational deformation leading to a network of fractures, bulging, and the development of a large gap in the moraine crest. Geographic information system analysis of topographic changes between 1967 and 2006 indicates that the displaced volume of the moraine is approximately 9.0 × 105 m3. In the last 39 years, the moraine crest has displaced 55 m (1.4 m yr−1) down towards the glacier. The development of slope instability is linked to a combination of debuttressing from recent glacier recession, deformation of the moraine, as well as the movement of a large, mobile, debris-mantled slope impinging the upslope margin of the lateral moraine. This case study illustrates the importance of glacial conditioning and local geomorphological factors in creating conditions for large-scale moraine instability in recently deglacierized alpine basins.  相似文献   

6.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

7.
The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350 km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5 m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 μmol C m−2 s−1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O 2 demand during the dry season, while most O 2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (≤10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m−2 yr−1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.  相似文献   

8.
The erosional remains of the Mesozoic Holyoke basalt in the Hartford, Pomperaug, and Deerfield basins of Connecticut and Massachusetts indicate an original flow volume of >1200 km3. Its feeder dike, which is about 50 m wide and 160 km long, can be traced down through 2 km of Mesozoic sediments and, as a result of faulting associated with basin formation, through an additional 6 km of Paleozoic metamorphic rocks. Chemical profiles through the distal and proximal parts of the flow and through the dike at depths of 2, 4, and 8 km provide sequential samples of the magma that rose during this one eruptive event. The flow and dike have restricted compositions that indicate saturation with olivine, augite, and plagioclase at depth. The flow consisted largely of a liquid at the pigeonite reaction point. Dike compositions can be modeled as mixtures of this liquid with up to 24% crystals of plagioclase, augite, and olivine. The dike compositions indicate equilibration with these minerals at 3.8 kbar. This pressure corresponds to a depth of 12.2 km, which is believed to have been the depth of the brittle/ductile transition in the crust at the time. This transition appears to be the only reasonable barrier that could have caused ponding of the magma at the mid-crustal level. The Holyoke liquid is interpreted to have segregated from a compacting crystal mush following 30% crystallization of the magma in this mid-crustal reservoir. Eruption of the basalt exhausted the supply of segregated liquid, and when the remaining crystal mush began to rise in the dike, the average density of the magma column increased until it matched the average density of the intruded crust, and the eruption ended. By analogy with the differentiation that took place in the solidifying Holyoke flow on the surface, the mid-crustal magma reservoir is estimated to have had a volume of at least 12,000 km3. The magma in this chamber must have come from a still deeper chamber, because it was too fractionated to have come directly from a mantle source. Received: 3 October 1997 / Accepted: 5 May 1998  相似文献   

9.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

10.
 Spatial variations in the density and velocity fields have been observed in the Gareloch (Scotland) during surveys in 1987–1988 and 1993–1994. The variation of the density field has been analyzed on a variety of time scales from semidiurnal to seasonal in order to quantify effects caused by the forcing factors of tidal mixing, freshwater input, and wind. Initial results indicate that water density in the loch is controlled (to a major degree) by the freshwater input from runoff from the local catchment area and from freshwater entering on the flood tide from the Clyde Estuary. It is estimated that during winter periods the high freshwater flows from the rivers Leven and Clyde into the Clyde Estuary account for up to 75% of the freshwater creating the density structure in the loch. Analysis of long-term dissolved oxygen data reveals that major bottom water renewals occurred between July and January in the years 1987–1994. Major bottom water dissolved oxygen renewals have a general trend but during the year sporadic renewals can take place due to abnormal dry spells increasing the density of the water entering from the Clyde, or consistently strong winds from the north reducing stratification in the loch and producing better mixed conditions. Velocities vary spatially, with the highest velocities of up to 0.6 m s–1 being associated with the velocity jet effect at the constriction at the sill of the loch. Observed near-surface mid-loch velocities increased as the vertical density gradients in the upper layers increased. This indicates for the observed conditions that increased stratification in the upper layers inhibits the entrainment rate and hence rate of gain of thickness of the wind-driven surface layer, resulting in increased surface velocities for a given wind speed and direction. The main flow is concentrated in the upper 10 m and velocities below 10 m are low. Observed mean spring tide surface velocities are on average 30% greater than mean neap tide surface velocities. Received: 22 May 1995 · Accepted: 23 August 1995  相似文献   

11.
More than 5000 landslides or potential landslides have been induced in the Three Gorges Reservoir (TGR) region since the impoundment in 2003, which have caused great damage and remain a huge threat to the dam and people living in the reservoir area. Understanding the deformation characteristics and failure mechanism of the landslides can be helpful in stability evaluation and landslide prediction. The primary aim of this study is to research the characteristics of the landslide motion and its relationships with environmental triggers, taking the Quchi landslide, a large, slow-moving, reactivated landslide in the TGR region, as an example. The instability clearly showed visible signs of movements since 2002, and after that, the slope has been experiencing persistent deformation. By combining 4 years of meteorological, hydrological data with displacement measurements from open fractures, deep boreholes, and surface points, as well as in situ observations, this paper reports the geological and geotechnical investigations performed to define the movement. The deformation is believed to be governed by reservoir water levels, while the precipitation has a minor effect. Seasonally, the slope movement has a very distinctive pattern with large deformation starting abruptly right after reservoir drawdown in June and lasting into late summer (September). Then there is a rapid transition to constant deformation (almost no displacement) as the reservoir level rises. The slope displacements appear to gradually increase every year, which suggests very high possibility of the large and overall failure of the slide. Both monitoring results and geomorphological observations have highlighted that the two active slide masses Q1 and Q2 would probably collapse in different kinematic evolution modes, i.e., the multistage failure and whole sliding motion.  相似文献   

12.
Wentao Ma 《Natural Hazards》2012,62(1):141-148
Dongjing reservoir with storage capacity of 955 million m3 and 150 m dam height had been set up in Guizhou province, southeastern China on May in 2005. After filling with water in August 20, 2009, the reservoir-induced earthquake in 20 km took place first in September 2009 at the 440 m water level. When the water level changes, the number of earthquakes is increased rapidly. On January 17, 2010, the largest M 4.4 earthquake with depth of 7 km has happen and month frequency achieved 21 events at the highest water level. M 4.4 earthquake caused rock collapse with the disaster of killed six people and nine injure. After our investigation and study, the reason of higher epicentral intensity of earthquake was the surface effect of near-field elastic wave transmission. The disaster of rock falls certainly depended on the very very shallow earthquake, the height of valley and fault. Comparing as same magnitude of natural earthquake, very shallow earthquake increased 1–2° of epicentral intensity I0, more than twice amplitude of S-wave at 200 m height of valley and the largest displacement on fault. The superposition of three factors has increased the epicentral intensity of earthquake and directly caused rock collapse with the disaster of killed six people and nine injure.  相似文献   

13.
The Abbotsford Landslide of 8 August 1979 occurred in an urban area of Dunedin, New Zealand, causing much damage to houses and urban infrastructure. Rapid failure occurred after weeks of preliminary movements, resulting in the formation of a approximately 5 million m3 block slide. It caused the loss of 69 houses, with an overall cost of about NZ $10–13 million. After several months of investigations, a commission of inquiry found that unfavorable geology (weak clay layers in a 7°-dip slope) was the underlying cause of the landslide. An old sand quarry at the toe of the slope and a leaking water main above the slide area were found to be man-made factors that contributed to the failure. Slope stability analysis showed that after sand excavation (approximately 300,000 m3), the water table had to rise 0.3 m less for failure to occur. Because the quarry closed 10 years before the landslide occurred, it is concluded that a long-term rise in groundwater levels because of the increased rainfall over the previous decade and leakage from the water main controlled the timing of the failure and, in this sense, are considered to have triggered the landslide.  相似文献   

14.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

15.
We investigated the role of sandy beaches in nearshore nutrient cycling by quantifying macrophyte wrack inputs and examining relationships between wrack accumulation and pore water nutrients during the summer dry season. Macrophyte inputs, primarily giant kelp Macrocystis pyrifera, exceeded 2.3 kg m−1 day−1. Mean wrack biomass varied 100-fold among beaches (range = 0.41 to 46.43 kg m−1). Mean concentrations of dissolved inorganic nitrogen (DIN), primarily NOx-N, and dissolved organic nitrogen (DON) in intertidal pore water varied significantly among beaches (ranges = 1 to 6,553 μM and 7 to 2,006 μM, respectively). Intertidal DIN and DON concentrations were significantly correlated with wrack biomass. Surf zone concentrations of DIN were also strongly correlated with wrack biomass and with intertidal DIN, suggesting export of nutrients from re-mineralized wrack. Our results suggest beach ecosystems can process and re-mineralize substantial organic inputs and accumulate dissolved nutrients, which are subsequently available to nearshore waters and primary producers.  相似文献   

16.
Mineralogical and textural changes accompanying ageing of silica sinter   总被引:3,自引:0,他引:3  
Twenty nine samples of silica sinter, ranging in age from modern to Miocene, record temporal changes in both mineralogy and texture. When first deposited, sinters consist largely of noncrystalline spheres (<1–8 μm diameter) of opal-A exhibiting varying degrees of close-packing. Particle densities range from 1.5 to 2.1 g cm−3, total water 4–10 wt%, and porosities 35–60%. Changes over ∼10,000 years following deposition are slight although the spheres may be invested by an additional film of secondary silica. For the next 10,000 to ∼50,000 years, the silica incrementally crystallises to become poorly crystalline opal-CT and/or opal-C; spherical particles of thin-bladed crystals (lepispheres) replace opal-A particles and coalesce in microbotryoidal aggregates (∼10–30 μm diameter). Amygdaloidal fibrous clusters occur with lepispheres. As silica lattice ordering becomes enhanced, total water content drops to <7 wt%, particle density increases to ∼2.3 g cm−3, and porosity reduces to <30%. The change from opal-A to opal-C takes place over a briefer periods (∼50 years) in silica sinters that contain other materials (e.g. calcite, sulfur, alunite, plant remains). Sinters older than ∼50,000 years have recrystallised to microcrystalline quartz. With the onset of quartz crystallisation at ∼20,000 years, total water is <0.2 wt%, particle density approximates quartz (2.65 g cm−3), and porosity is <4%. The progressive changes in silica species and texture yield ageing profiles for sinters that may serve as guides to the paleohydrology of geothermal systems and/or epithermal ore deposits in areas where surface thermal activity has declined or ceased. Received: 18 November 1998 / Accepted: 6 July 1999  相似文献   

17.
Sixty-five sediment samples and 25 water samples were collected from Al-Mujib reservoir, central Jordan, in order to investigate the heavy metal and ionic contamination assessment. Therefore, to achieve this aim, water and sediment samples were collected during winter and summer seasons (2007) from Al-Mujib reservoir and the areas surrounding it. The study shows that there are elevated levels of SO4 2−, Cl and Na+ in reservoir water, which might originate from anthropogenic activities in the reservoir catchment area. In addition, the reservoir water has higher total hardness (TH) values together with high Ca and Mg contents. This might be attributed to pH of reservoir water and the nature of the rocks exposed in the catchment area. The average levels of heavy metals in reservoir sediments are Fe = 14,888.1, Cu = 17.8, Zn = 88.6, Ni = 38.7, Cd = 4.4, Mn = 337.9 and Pb = 6.1 mg/kg, which are lower than that observed in Wadi Al-Arab reservoir, northern Jordan. The values of enrichment factor are Cd = 35.5, Ni = 3.02, Zn = 2.54, Cu = 1.26, Mn = 1.2 and Pb = 0.57; these values indicate that heavy metals in sediments of Al-Mujeb reservoir have a different anthropogenic incrimination inputs. The study showed that the sediments are polluted with Cd, relatively contaminated with Ni and Zn and uncontaminated with respect to Mn, Pb and Cu.  相似文献   

18.
 The Valley of Hermosillo coastal aquifer, state of Sonora, northwestern Mexico, has been over-exploited for the last four decades, in order to maintain agricultural activity in one of the most important irrigation districts of the Mexican Republic. The over-exploitation has resulted in the development of several drawdown cones and in the lowering of the water table to as much as 50 m below mean sea level. Contamination of the aquifer in the form of salt-water intrusion from the Gulf of California and high nitrate concentrations is the consequence of human activities. A hydrogeochemical zonation of the aquifer, based on the presence of different water families, led to the identification of a coastal band approximately 30 km wide that is affected by salt-water intrusion. Conductivity of the sampled water and the interpretation of the ratio Na/Cl×1000 was used to identify the location of three major intrusion plumes in this coastal band. The background nitrate contamination of the aquifer is about 4 ppm, but contents as great as about 17 ppm occur in some wells. Irrigation with raw sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for localized peaks of the nitrate concentration. Received, October 1996 Revised, September 1997, May 1998 Accepted, July 1998  相似文献   

19.
On November 4, 2007, a large block slide occurred on the south face of the Cerro La Pera at San Juan Grijalva (SJG), northwest Chiapas, Mexico. The SJG landslide has an area of 1.11 km2 and a volume of 50 Mm3, making it one of the largest landslide of its type in the twentieth century. The landslide created a dam over 80 m high and 1,170 m wide across the Grijalva River, backing up the water and forming a 49 km2 lake. Landslide-generated tsunamis up to 15 m high destroyed the village of SJG, and the newly formed lake flooded 21 villages located upstream. The landslide killed 16 people and caused around 3,600 to be evacuated with incalculable economic losses. It was perhaps the most catastrophic landslide in the history of Mexico. The probable trigger of the landslide was cumulative precipitation of about 67% of the average annual rainfall over the preceding 30 days. The associated potentially causative factors include a M4.5 earthquake that occurred 5 days before the landslide and a water-level drawdown at the Grijalva River generated by the release of water from the Pe?itas dam located 14 km downstream.  相似文献   

20.
This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney‘s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m − 2 during summer and lowest value of 856.9 ± 92.0 g dry wt m − 2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m − 2) and site 5 (856.7 ± 96.8 g dry wt m − 2), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号