首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
武汉台重力潮汐长期观测结果   总被引:5,自引:1,他引:4       下载免费PDF全文
采用武汉台超导重力仪(SG C032)14年多的长期连续观测资料,研究了固体地球对二阶和三阶引潮力的响应特征,精密测定了重力潮汐参数,系统研究了最新的固体潮模型和海潮模型在中国大陆的有效性.采用最新的8个全球海潮模型计算了海潮负荷效应,从武汉台SG C032的观测中成功分离出63个2阶潮汐波群和15个3阶潮汐波群信号,3阶潮波涵盖了周日、半日和1/3日三个频段.重力潮汐观测的精度非常高,标准偏差达到1.116 nm·s-2,系统反映了非流体静力平衡、非弹性地球对2阶和3阶引潮力的响应特征.结果表明,现有的武汉国际重力潮汐基准在半日频段非常精确,但在周日频段存在比较明显的偏差,需要进一步精化.对于中国大陆的大地测量观测,固体潮可以采用Dehant等考虑地球内部介质非弹性和非流体静力平衡建立的固体潮理论模型或Xu 等基于全球SG观测建立的重力潮汐全球实验模型作为参考和改正模型,海潮负荷效应应该采用Nao99作为改正模型.  相似文献   

2.
Several results about the long period (LP) tidal waves are obtained by the analysis of series of superconducting gravity data, provided by the Global Geodynamics Project (GGP). The most important result is the determination of a single group called LPMF, composed by all LP tides but representing accurately the parameters of the Mf wave. As the LP tidal generating potential is vanishing at latitudes ±35°15′52″ we cannot determine accurate tidal amplitude factors for the stations located between ±40° and ±30°. However, it is still possible to obtain tidal residual vectors and compare them with oceanic tidal loading computations. For 15 stations the NAO99 oceanic model is giving a coherent picture. For nine stations with Mf amplitude larger than 3 μgal (1 μgal = 10 nm s−2) a global analysis is obtained by introducing the loading effect of the ocean directly in the observation equations. The mean amplitude factor obtained for LPMF is larger than expected from the models and there is a significant phase lag, showing the imperfection of the tidal oceanic models for Mf. Other new result is the first separate estimation of the parameters of the LP tides, generated by the tidal potential of third degree, dominated by a Lunar declinational monthly wave, called here 3Mmd. Due to their small amplitudes (under 1 μgal) these waves are practically hidden by the noise. Nevertheless, the quality of the data and the flexibility of the VAV analysis method [Venedikov, A.P., Arnoso, J., Vieira, R., 2001. Program VAV/2000 for tidal analysis of unequally spaced data with irregular drift and colored noise. J. Geodetic Soc. Jpn. 47 (1), 281–286; Venedikov, A.P., Arnoso, J., Vieira, R., 2003. VAV: a program for tidal data processing. Comput. Geosci. 29, 487–502.] allow getting significant results, in agreement with the theory of the Earth deformation by the tidal potential of third degree.  相似文献   

3.
By the end of 1981 the International Center of Earth Tides (ICET) had collected and evaluated a considerable amount of data from 180 stations, including those of the Trans-World Profile which ensure for the first time a world-wide distribution including the tropical areas and the southern hemisphere. In 1979–80, new oceanic cotidal maps of high quality, established by Schwiderski, became available. These maps fit “on-land” tidal-gravity measurements quite successfully. A new theoretical approach developed by Wahr in 1981 has resulted in a set of theoretical formulae establishing the latitude-dependence of the classical elastic amplitude factors for tidal deformations.We calculate here, for six tidal waves, the correlations between the observed gravity variations and those resulting from a calculation based upon the Schwiderski maps. These correlations are highly significant. After subtraction of these oceanic effects we calculate the latitude-dependences of the experimentally determined amplitude factors, which are found to fit Wahr's theoretical formulae. There remains, however, a serious discrepancy in the constant terms of the various formulae. The effects of heterogeneities in the lithosphere on tidal deformations are also clearly identified.  相似文献   

4.
中国东西重力潮汐剖面   总被引:5,自引:0,他引:5       下载免费PDF全文
为了检验体潮与海潮的理论模型,分析了中国东西重力潮汐剖面(1981年9月-1985年1月)。同时,为研究LaCoste ET-20和ET-21重力仪的格值系统,建立了一条由17台LaCoste G型和2台LaCoste D型重力仪观测的重力垂直基线。在基线上标定的结果表明,ET-21重力仪的格值大了1%。由标定得到的格值计算剖面上各测站的潮汐因子,经海潮改正后,接近Wahr模型值,振幅因子的残差:O1波小于0.3μGal,M2波小于0.4μGal。但是上海和拉萨的观测经海潮改正后,相位迟后有很大的改善,振幅因子却更偏离于模型值,其潮汐异常主要是近海的海潮模型不完善,以及在海潮计算中,所采用的地球模型未考虑地壳与上地幔的横向不均匀性所引起。  相似文献   

5.
The gravimetric parameters of the gravity pole tide are the amplitude factor δ, which is the ratio of gravity variations induced by polar motion for a real Earth to variations computed for a rigid one, and the phase difference κ between the observed and the rigid gravity pole tide. They can be estimated from the records of superconducting gravimeters (SGs). However, they are affected by the loading effect of the ocean pole tide. Recent results from TOPEX/Poseidon (TP) altimeter confirm that the ocean pole tide has a self-consistent equilibrium response. Accordingly, we calculate the gravity loading effects as well as their influence on the gravimetric parameters of gravity pole tide at all the 26 SG stations in the world on the assumption of a self-consistent equilibrium ocean pole tide model. The gravity loading effect is evaluated between 1 January 1997 and 31 December 2006. Numerical results show that the amplitude of the gravity loading effect reaches 10−9 m s−2, which is larger than the accuracy (10−10 m s−2) of a SG. The gravimetric factor δ is 1% larger at all SG stations. Then, the contribution of a self-consistent ocean pole tide to the pole tide gravimetric parameters cannot be ignored as it exceeds the current accuracy of the estimation of the pole tide gravity factors. For the nine stations studied in Ducarme et al. [Ducarme, B., Venedikov, A.P., Arnoso, J., et al., 2006. Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor. J. Geodyn. 41, 334–344.], the mean of the modeled tidal factors δm = 1.1813 agrees very well with the result of a global analysis δCH = 1.1816 ± 0.0047 in that paper. On the other hand, the modeled phase difference κm varies from −0.273° to 0.351°. Comparing to the two main periods of the gravity pole tide, annual period and Chandler period, κm is too small to be considered. Therefore, The computed time difference κL induced by a self-consistent ocean pole tide produces a negligible effect on κm. It confirms the results of Ducarme et al., 2006, where no convincing time difference was found in the SG records.  相似文献   

6.
The Free Core Nutation (FCN) is an important eigenmode which affects both Earth rotation and body tide. The FCN parameters, the resonance period and the quality factor are important for understanding the dynamics of the Earth at nearly diurnal periods. Those parameters are usually estimated either from the Very Long Baseline Interferometry (VLBI) observations of nutation, or from the tidal gravity measurements. In this paper we investigate the determination of the FCN parameters from gravity records covering a period of more than three years, collected with the use of a LaCoste&Romberg Earth Tide no. 26 gravimeter, located at Józefos?aw observatory near Warsaw. From the resonant enhancements of gravimetric factors and phases of diurnal tidal gravity waves, we could infer the FCN period to be equal to 430 sidereal days. This result is in very good agreement with previous gravimetric and VLBI nutation results, confirming the discrepancy in the dynamic flattening of the outer liquid core from its theoretical value based on the hydrostatic equilibrium assumption. The estimated FCN quality factor (Q ≈ 1300) is considerably smaller than the VLBI nutation result, which confirms that the local gravity measurements are more sensitive than VLBI global analyses to site-dependent phenomena (such as atmospheric and indirect ocean tidal effects). We also investigated the importance of gravimetric corrections in the FCN analysis, including numerical tests and simulations. This allowed us to estimate the uncertainty of FCN parameters due to improper or incomplete set of environmental corrections. We took also into account the impact of gravimetric factor errors and tidal wave selection on estimated FCN parameters. We demonstrated that despite relatively noisy measurements due to unfavorable gravimeter location, we were able to obtain very good results in case when proper correction and tidal wave selection were applied.  相似文献   

7.
Summary The tidal gravimetric factor due to the elastic yielding of the Earth has been determined by gravimetric measurements on Unst (Shetland Islands), extending over the time of one month. Its corrected value isG=1.205±0.03. The influence of applying different methods of harmonic analysis, and the effects of ambient temperature and pressures and of the sea tides on the gravimetric results are discussed. No significant difference inG for semi-diurnal and diurnal tides remains after the necessary corrections have been made. The amplitude of the semidiurnal load depression is about 2 cm and it is shown that the more distant North Atlantic tides have a greater effect than the regional tides near the Shetlands. An approximate calculation gives 4.3×1011 CGS-units as the mean rigidity of the part of the Earth's crust yielding to the maritime loading differences in this region.  相似文献   

8.
A knowledge of the vertical component of the oceanic tidal load to a precision of at least one microgal is essential for the geophysical exploitation of the high-precision absolute and differential gravity measurements which are being made at ground level and in deep boreholes. On the other hand the ocean load and attraction signal contained in Earth tide gravity measurements can be extracted with a precision which is sufficient to characterize the behaviour of the oceanic tides in different basins and this provides a check of the validity of the presently proposed cotidal maps. The tidal gravity profiles made since 1971 from Europe to Polynesia, through East Africa, Asia and Australia, with correctly intercalibrated gravimeters, comprise information from 91 tidal gravity stations which is used in this paper with this goal in mind.A discussion of all possible sources of error is presented which shows that at the level of 0.5 μgal the observed effects cannot be ascribed to computational or instrumental errors. Cotidal maps which generate computed loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard to apply tidal corrections to high-precision measurements made by using new techniques in geodesy, geophysics and geodynamics, satellite altimetry, very long baseline interferometry, Moon and satellite laser ranging and absolute gravity. The recent cotidal maps calculated by Schwiderski for satellite altimetry reductions agree very well with land-based gravimeter observations of the diurnal components of the tides (O1, K1 and P1 waves) but his semi-diurnal component maps (M2, S2 and N2 waves) strangely appear less satisfactory in some large areas. The maps of Hendershott and Parke give good results in several large areas but not everywhere. More detailed investigations are needed not only for several coastal stations but mainly in the Himalayas.  相似文献   

9.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products.  相似文献   

10.
The first phase (1997–2003) of the Global Geodynamics Project (GGP) has now been completed. Data from superconducting gravimeters (SGs) within GGP have shown great capabilities in a wide spectrum of geophysical applications from the tidal studies to the long-period seismology. Here, we compare the noise levels of the different contributing stations over the whole spectrum. We use three different processing procedures to evaluate the combined instrument-plus-site noise in the long-period seismic band (200–600 s), in the sub-seismic band (1–6 h) and in the tidal bands (12–24 h). The analysis in the seismic band has demonstrated that SGs are particularly well suited for the studies of the long-period normal modes and thus are complementary to long-period seismometers. In the sub-seismic band, the power spectral densities, computed over a period of 15 continuous days for every GGP station, cross the New Low Noise Model of Peterson from T = 16 min to T = 4.6 h. SG data are therefore appropriate for studying long-period seismic and sub-seismic modes. In the tidal bands, the noise comparison is realised by a least-squares fit to tides, local air pressure and instrumental drift, leading to gravity residuals where we estimate a standard deviation and average noise levels in different tidal frequency bands. Tidal gravity observations using SGs have also shown to be an independent validation tool of ocean tidal models, and they are therefore complementary to tide gauge and altimetric data sets. Knowledge of the noise levels at each station is important in a number of studies that combine the data to determine global Earth parameters. We illustrate it with the stacking of the data in the search for the gravity variations associated with the sub-seismic translational motions of the inner core, the so-called Slichter triplet.  相似文献   

11.
地球重力场的精细频谱结构及其应用   总被引:5,自引:7,他引:5       下载免费PDF全文
综述了近年内在全球地球动力学合作观测和研究网络框架下开展的重力场观测、频谱结构和应用研究方面的成果. 内容涉及精密大气、海潮负荷信号检测, 重力潮汐和自由核章动参数测定, 海潮模型和重力固体潮模型有效性检验, 重力潮汐实验模型构制, 地球球型基频和低阶震型谱峰分裂现象和地球Chandler摆动等方面. 文章还介绍了综合现代大地测量技术, 全球超导重力仪的长期、连续观测在地表水循环、同震和震后形变、地球慢形变和地壳垂直运动等方面将发挥重要作用的情况.  相似文献   

12.
本文研究了液核地球对日月引潮力位球谐函数项的变形响应,即周日固体潮。作为数值结果,计算了1066A地球模型的周日潮汐勒夫数。所建立的周日固体潮理论模型改进了Molodensky液核动力学理论模型。为了比较两者之间的差异,还根据Molodensky理论模型计算了1066A地球模型的周日潮汐勒夫数。  相似文献   

13.
The time variability of diurnal tides was investigated by analyzing gravity observations from global superconducting gravimeter (SG) stations with running time intervals. Through least-square and Bayesian approaches, FCN resonance parameters were estimated for each data section after obtaining the tidal parameters of mainly diurnal tidal waves. The correlation of the time variation in diurnal tidal waves and FCN period was discussed. For comparison, a similar method was used to analyze VLBI observations to study the time variability of nutation terms and FCN period. The variation trend of the FCN period totally depends on the Ψ1 wave in tidal gravity and on the retrograde annual term in nutation. We observed a similar variation trend in the FCN periods obtained from different SG stations worldwide and VLBI observations. The relation between diurnal tides and LOD variations is discussed and the possible mechanisms of the decadal variation in FCN periods were discussed.  相似文献   

14.
中国大陆精密重力潮汐改正模型   总被引:12,自引:4,他引:8       下载免费PDF全文
利用理论和实验重力固体潮模型,充分考虑全球海潮和中国近海潮汐的负荷效应,建立了中国大陆的精密重力潮汐改正模型.结果表明,采用不同的固体潮模型会对重力潮汐结果产生相对变化幅度小于0.06%的差异;在沿海地区海潮负荷的影响约为整个潮汐的4%,而中部地区约为1%,其中中国近海潮汐模型的影响约占整个海潮负荷的10%,内插或外推潮波的负荷约占海潮负荷的3%.通过比较实测的重力数据表明,本文给出的重力潮汐改正模型的精度远远优于0.5×10-8 m·s-2,说明了本文构建的模型的实用性,可为中国大陆高精度重力测量提供有效参考和精密的改正模型.  相似文献   

15.
The tropospheric zenith total delay (ZTD) derived from very long baseline interferometry (VLBI) is an important parameter of the atmosphere, reflecting various atmosphere-related processes and variations. In this paper, ZTD time series of the IVS rapid combined tropospheric product (2002–2006) with a 1-h resolution are used for the first time to investigate the diurnal and semidiurnal oscillations. Significant diurnal and semidiurnal variations of ZTD are found at all VLBI stations. The amplitude of the diurnal cycle S1 is 0.6–1.2 mm at most of the VLBI stations, and the amplitude of the semidiurnal cycle S2 is 0.2–1.9 mm, which nearly accord with the surface pressure tides S1/S2 and co-located GPS estimated S1/S2. The results indicate that the S1 and S2 behaviors are mainly dominated by the hydrostatic component, namely pressure tides. In general, the semidiurnal S2 amplitudes are slightly larger than the diurnal S1. While S1 shows no clear dependency on site altitude, S2 has a regular distribution with VLBI site altitude. The results are in accordance with predictions of the classic tidal theory [Chapman, S., Lindzen, R.S., 1970. Atmospheric Tides, Gordon and Breach, New York].  相似文献   

16.
The deformational and gravitational response of the Earth to the tide generating potential has generally involved 1-D (i.e., depth varying) Earth models. Progressive improvement in observational constraints on body tides, generated from both ground and space-based surveys, suggests that an examination of the potential impact of lateral variations in Earth structure is warranted. We present a suite of predictions of the body tide response within the semi-diurnal, diurnal and long-period tidal bands computed using a finite-volume numerical code. The calculations adopt 3-D density and elastic structure taken from seismic inferences and, in a subset of the calculations, dynamic topography on the surface and internal interfaces. We find that perturbations in the radial displacement and surface gravity within the semi-diurnal band reach ~ 1 mm and 0.15 µgal, respectively. The perturbations in the diurnal band are comparable to these values, and within the long-period band they are a factor of 3–5 smaller. We also demonstrate that lateral variations in the elastic moduli, which have been ignored in recent work, contribute greater than 50% of the total perturbation. The level of perturbation associated with 3-D structure exceeds the current observational uncertainty obtainable using space-geodetic methods, and this suggests the possibility of performing tidal tomographic inversions of such data.  相似文献   

17.
This paper aims to review the main scientific achievements which were obtained in the first phase (1997–2003) of the Global Geodynamics Project (GGP) consisting of a worldwide network of superconducting gravimeters (SG) of about 20 instruments. We show that the low noise levels reached by these instruments in various frequency bands allow us either to investigate new signals of very small amplitude or to better determine other signals previously seen. We first report new results in the long-period seismic band with special emphasis on the detection of the 2S1 normal mode and the splitting of the fundamental spheroidal mode 2S0 after the magnitude 8.4 Peru earthquake in 2001. We also discuss briefly the ‘hum’, which consists of a sequence of fundamental normal modes existing between 2 and 7 mHz even in the lack of any seismic excitation, and was first discovered on the Syowa (in Antarctica) instrument in 1998. We will comment on the search for the Slichter mode 1S1 of degree 1 which is associated with a translational motion of the inner core inside the liquid core. Atmospheric effects are reviewed from the local to the global scale and the improvement due to pressure loading computations on residual gravity signals is shown. An interesting study exhibiting the gravity consequence due to sudden rainfall and vertical mass motion in the atmosphere (without ground pressure change) is presented. The precision of the SGs leads to some convincing results in the tidal domain, concerning the fluid core resonance effect (free core nutation (FCN)) on diurnal tides or various loading effects (linear, non-linear) from the oceans. In particular, SGs gravity measurements are shown to be useful validating tools for ocean tides, especially if they are small and/or confined to coastal regions. The low instrumental drift of the SGs also permits to investigate non-tidal effects in time-varying gravity, especially of annual periodicity. Hydrology has also a signature which can be seen in SG measurements as shown by several recent studies. At even lower frequency, there is the Chandler motion of 435-day period which leads to observable gravity changes at the Earth's surface. We finally report on the progress done in the last years in the problem of calibrating/validating space satellite data with SG surface gravity measurements.  相似文献   

18.
Methods taking into account the effect of tidal forces on gravity measurements are considered. Corrections for the effect of tidal forces can exceed 250 μGal. Only the structure of the Earth and positions of tide-generating celestial bodies are necessary for taking into account earth tides, while cotidal charts are additionally required for the correct incorporation of the effect of ocean tides. The effect can reach a few tens of μGal near shorelines. The modern accuracy of gravity measurements being 1–2 μGal, the ocean tide effect, together with other less significant factors, should be considered for the correct interpretation of gravity data.  相似文献   

19.
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.  相似文献   

20.
Dilatation of aquifer and associated water level fluctuation in groundwater well is known to be driven periodically from lunar, solar, or other tidal forces. Time‐dependent variables in groundwater system, such as water level, can be converted to power spectra in the frequency domain using Fourier transform to evaluate significant fluctuation. The major innovation of this research is to develop spectral representation in frequency domain for the groundwater system that the storage in confined aquifer can be determined considering dilatation affected by Earth tides and barometric effect. In order to verify applicability of the evolved method, time series of Earth tides and barograph are collected; aquifer storage is then determined inversely by selecting significant semidiurnal and diurnal components in spectra computation. It suggests that to discover groundwater storage using groundwater level with barograph and tidal potential of Earth in frequency domain becomes accessible and feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号