首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monterey Fan is the largest modern fan off the California shore. Two main submarine canyon systems feed it via a complex pattern of fan valleys and channels. The northern Ascension Canyon system is relatively inactive during high sea-level periods. In contrast, Monterey Canyon and its tributaries to the south cut across the shelf and remain active during high sea level. Deposition on the upper fan is controlled primarily by the relative activity within these two canyon systems. Deposition over the rest of the fan is controlled by the oceanic crust topography, resulting in an irregular fan shape and periodic major shifts in the locus of deposition.  相似文献   

2.
Semidiurnal internal tides in Monterey Canyon are shown to be partially responsible for macronutrient enrichment of surface waters in Monterey Bay, California. CTD time series at five stations in the canyon revealed the presence of semidiurnal internal tides with heights between 50 and 120 m. p Thermistor data demonstrated an internal tidal bore at the head of the canyon. Data and theory suggest that internal tidal bores may be breaking, due to either shear instability or direct overturning, thereby enriching the immediate area near the canyon head.Transects normal to Monterey Canyon showed a 20-m thick lens of 12 °C water moving out of the canyon at high internal tide. This lens was then pinched off from the canyon, and led to a density-induced divergence. The nutrient transport associated with the internal tidal divergence could support as much as 30% of the daily primary productivity in the northern part of Monterey Bay during non-upwelling periods.  相似文献   

3.
There are three major fan valleys on upper Monterey fan. Deep-tow geophysical profiles and 40 sediment cores provide the basis for evaluation of the sedimentation histories of these valleys. Monterey fan valley leads from Monterey canyon to a major suprafan and is bounded by levees that crest more than 400 m above the valley floor. The valley passes through a large z-bend or meander. Monterey East fan valley joins Monterey fan valley at the meander at about 150 m above the valley floor, and marks an earlier position of the lower Monterey fan valley. Ascension valley, a hanging contributary to the Monterey fan valley, appears to have once been the shoreward head of the lower part of the present Monterey fan valley. The relief of Monterey fan valley appears from deep-tow profiles to be erosional. The valley is floored with sand. Holocene turbidity currents do not overtop the levees 400 m above the valley floor, but do at times overflow and transport sand into Monterey East valley, producing a sandy floor. An 1100 m by 300 m dune field was observed on side scan sonar in Monterey East valley.Ascension fan valley was floored with sand during glacial intervals of lowered sea level, then was cut off from its sand source as sea level rose. A narrow (500 m), erosional, meandering channel was incised into the flat valley floor; the relief features otherwise appear depositional, with a hummocky topography perhaps produced in the manner of a braided riverbed. The sand is mantled by about 6 m of probable Holocene mud. Hummocky relief on the back side of the northwestern levees of both Ascension and Monterey valleys is characteristic of many turbidite valleys in the northeast Pacific. The hummocky topography is produced by dune-like features that migrate toward levee crests during growth.  相似文献   

4.
Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin.The integrated analysis shows that the canyon fill consists of four 3rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3rd-order sequence boundaries). Within each 3rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5.The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs.Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.  相似文献   

5.
《Ocean Modelling》2002,4(3-4):221-248
Three-dimensional numerical simulations of the generation and propagation of the semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey Canyon are carried out using a primitive equation model. Forcing with just sea level at the offshore boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal tides are generated at the canyon foot and rim, and along portions of the canyon floor. The results compare favorably with observations, both indicating enhancement of energy along the canyon floor propagating at an angle consistent with linear internal wave theory. Due to the earth's rotation, internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern side. The effect of canyon floor slope is explored, with the finding that small changes in the slope result in large changes in the amount and distribution of the internal tide energy. Canyons whose floors are subcritical with respect to the semidiurnal frequency along their entire length have very little baroclinic energy, whereas canyons that are near-critical along much of their length, such as the Monterey Canyon, develop strong internal tides that propagate shoreward. Canyons that are near-critical at their mouths but supercritical further inshore generate the most internal tidal energy overall, although little of it makes it onto the continental shelf shoreward of the canyon head. The effects of internal tides within the canyons can be seen outside the canyons as well. Water is transported from depth onto the adjacent continental shelf along the canyon rims. This tidal pumping can be responsible for alongshore internal tide propagation and tidal-period surface currents with relatively small horizontal scales of variability.  相似文献   

6.
Drainage-extraction algorithms traditionally used for extracting river networks and watersheds from gridded land topography are applied to gridded multibeam bathymetry of the mid-California margin. The algorithms are used to automatically map two regional tributary networks of submarine canyons and deepsea channels draining Monterey Bay, the principal conduits of which are Acension and Monterey Canyons. The algorithms reliably map subaqueous drainage areas, but are prone to error in mapping the extent of submarine canyon and channel thalwegs due to operator subjectivity and algorithm limitations. A geomorphic comparison of the Acension and Monterey Canyon networks, with 12 river networks in the continental U.S., illustrates both the potential and weaknesses of using drainage extraction algorithms to analyze sediment pathways in gridded bathymetry.  相似文献   

7.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

8.
In order to define the nature and distribution of the organic matter (OM) preserved in the modern Ogooué deep sea turbidite system (Gabon), bulk geochemical techniques (Rock-Eval pyrolysis, elemental and isotopic analyses) and palynofacies were applied to three piston cores collected in the Cape Lopez Canyon and lobe and on the continental slope, north of the canyon.The hemipelagic sedimentation in the study area is characterized by high accumulations of well-preserved OM (∼2-3 wt. TOC %). Bulk geochemical and palynofacies analysis indicate both a marine and terrestrial origin of the OM. Contribution of the marine source is higher on the slope than in the canyon and lobe.OM accumulation in turbidites is strongly controlled by the combined influence of the Cape Lopez Canyon and littoral drift. In the canyon and lobe, turbidites show generally low TOC content (0.5 wt. %) and OM is oxidized. The origin of the OM is interpreted as both marine and terrestrial, with a higher contribution of continental source versus marine source. The low TOC contents are due to the large siliciclastic fraction transported by the littoral drift and diverted in the Cape Lopez Canyon during high energy processes (e.g. storms) which tend to dilute the OM in the turbidites. Transport by long-shore currents and/or turbiditic flows leads to oxidation of the OM.On the continental slope located north of the Cape Lopez Canyon, large amounts of OM are deposited in turbidites (up to 14 wt. %). The OM is predominantly derived from terrestrial land plants and has not been subjected to intense oxidation. These deposits are characterized by high hydrocarbon potential (up to 27 kg HC/t rock), indicating a good potential as gas-prone source rock. Because Cape Lopez Canyon captures a significant part of the sediment transported by the littoral drift, the siliciclastic sedimentary flux is reduced north of the canyon; OM is thus concentrated in the turbidites. Variation in TOC content within turbidite laminae can be explained by the burst and sweep deposition process affecting the boundary layer of the turbulent flow.This study confirms that gravity flows play a preponderant role in the accumulation and preservation of OM in deep water and that deep sea turbidite systems could be regarded as an environment where organic sedimentation occurs.  相似文献   

9.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwest South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time, smaller width and length, and single sediment supply. The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in Huaguang Canyon have been identified as regional caps. Therefore, Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea. Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

10.
This study examines the influence of a submarine canyon on the dispersal of sediments discharged by a nearby river and on the sediment movement on the inner shelf. The study area includes the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km seaward from the mouth of the Kao-ping River in southern Taiwan. Within the study area 143 surficial sediment samples were taken from the seafloor. Six hydrographic surveys along the axis of the submarine canyon were also conducted over the span of 1 yr. Three different approaches were used in the analysis of grain-size distribution pattern. They include (1) a combination of ‘filtering’ and the empirical orthogonal (eigen) function (EOF) analysis technique, (2) the McLaren Model, and (3) the ‘transport vector’ technique. The results of the three methods not only agree with one another, they also complement one another. This study reveals that the Kao-ping Submarine Canyon is relatively a stratified and statically stable environment. The hydrographic characteristics of the canyon display seasonal variability controlled primarily by the temperature field and the effluent of the Kao-ping River. The hydrographic condition and the bottom topography in the canyon suggest the propagation of internal tides during the flood season (summer) of the Kao-ping River. The submarine canyon acts as a trap and conduit for mud exchange between the Kao-ping River and offshore. Near the head of the canyon there is a region of sediment transport convergence. This region is also characterized by high mud abundance on the seafloor that coincides with the presence of high suspended sediment concentration (SSC) spots in the bottom nepheloid layer. Outside the submarine canyon on the shelf where the evidence of wave reworking is strong, the northwestward alongshore transport dominates over the southeastward transport, which is a common theme on the west coast in southern Taiwan.  相似文献   

11.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwestern South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time,smaller width and length, and single sediment supply. The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in the Huaguang Canyon have been identified as regional caps. Therefore, the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea. The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

12.
琼东南盆地深水区中央峡谷黄流组物源特征   总被引:3,自引:2,他引:1  
物源分析作为岩相-古地理研究的前提和基础,物源体系决定了砂体的展布和储集性能。为明确中央峡谷体系黄流组储集体展布规律及下一步勘探方向,本文应用中央峡谷最新钻井资料,采用重矿物组合、锆石U-Pb测年等分析方法,结合地震反射特征,对中央峡谷黄流组物源体系特征进行分析。地震反射特征表明来自海南隆起和昆嵩隆起物源的三角洲体系,通过二次搬运沉积了陆架斜坡区和盆底的低位海底扇,为中央峡谷的沉积充填提供了充足的粗碎屑沉积物;新钻井黄流组样品中重矿物组合以白钛矿、石榴石、磁铁矿含量较高为主要特征,与莺歌海盆地受蓝江物源影响和琼东南盆地受丽水-秋滨河物源影响的地层重矿物组合相似;锆石U-Pb测年分析表明,中央峡谷黄流组地层中样品年龄图谱具有30~2 000Ma变化范围,与莺歌海盆地受昆嵩隆起物源影响的钻井以及越南现代河流采集的沙样具有非常一致的年龄段和丰度。综上所述,中央峡谷受多物源的影响,越南昆嵩隆起为主的琼东南盆地西部物源体系,是琼东南盆地乐东凹陷晚中新世深水扇以及中央峡谷粗碎屑物质的主要沉积物供给来源区。  相似文献   

13.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

14.
Sagami Bay is a deep-water foreland basin with an average sedimentary rate of approximately 0.1 g/cm2/year. It is an appropriate area to study for better understanding of sedimentary processes in a setting with a high sedimentation rate. Seven multiple core samples, 30-50 cm thick, were obtained from Sagami Bay. Four of the core samples were taken from the Tokyo submarine fan system (Tokyo canyon floor, Tokyo fan valley and its levee, the distal fan margin). Two samples were obtained from the Sakawa fan delta and the adjacent topographic high. The remaining one was from an escarpment of the Sagami submarine fault. Variations in chemical composition can be recognized at every coring site. They show two different sediment sources: the sediments of the Tokyo submarine fan system and those from Sakawa fan delta. Further, there are differences in chemical composition between canyon floor and levees even within the Tokyo submarine fan system. The results suggest that the sedimentary process is strongly controlled not by vertical particle settling but by a hyperpycnal flow process. The proxies obtained from the core samples do not reflect conditions in the water column immediately overlying the sea floor. Rather, they are controlled by conditions on the adjacent continental shelf or/and shallow basins, which are the areas of primary accumulation.  相似文献   

15.
Located in the south-eastern part of the Bay of Biscay, the Capbreton Canyon incises the continental shelf up to the 30 m isobath contour, and acts as a natural conduit for continental and shelf-derived sediments. EM1000 multibeam bathymetry shows two main features characterising the canyon — a deeply entrenched meandering channel, bordered by fluvial-like terraces constituting large sediment traps. A dataset of cores and seismic profiles together with a multibeam bathymetry map has enabled the characterisation of recent sedimentary activity in the axial channel and on the terraces. Data analysis evidenced the major role of the canyon head in recent sediment dynamics. This part of the canyon is a temporary reservoir for sediments, accumulated by coastal hydrodynamic processes. Exceptional climatic, tectonic or hydrodynamic events can mobilise the sediments and generate gravity-driven flows. Under the present-day sea-level highstand conditions, these flows are not powerful enough to bring their bedload to the deep sea, and are confined mainly to the upper part of the canyon. Turbidity currents model the axial channel pathway and are at the origin of terrace formation. Terraces in the Capbreton Canyon are not typical but rather are reduced to confined levees. Three factors control the vertical growth of a terrace: (1) the amount of overspilled sediments brought by turbidity currents, (2) hemipelagic sedimentation and (3) terrace height. The amount of sediment spilling over a terrace decreases with increased terrace elevation. Concurrently, the proportion of hemipelagic fallout depositing on a terrace increases. Terraces are considered to be fossil when the height of the terrace prevents further deposition by overspilling. The terraces studied in this paper are interpreted as having formed during the Holocene, implying that the sediment dynamics of the Capbreton Canyon is continuous through time. Highstand periods differ from lowstand periods because they show a decrease in the energy of erosive processes. Temporal variations in erosive and depositional processes in the canyon are controlled by the Adour River, which delivers large amounts of sediment to the system.  相似文献   

16.
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E–W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky–hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N–S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E–W fan channel was probably affected by the E–W fault and the basement morphology.  相似文献   

17.
The Pearl River Canyon system is a typical canyon system on the northern continental slope of the South China Sea, which has significant implications for hydrocarbon exploration. Through swath bathymetry in the canyon area combined with different types of seismic data, we have studied the morphotectonics and controlling factors of the canyon by analyzing its morphology and sedimentary structure, as well as the main features of the continental slope around the canyon. Results show that the Pearl River Canyon can be separated into three segments with different orientations. The upper reach is NW-oriented with a shallowly incised course, whereas the middle and lower reaches, that are located mainly in the Baiyun Sag, have a broad U-shape and have experienced consistent deposition. Seventeen deeply-cut canyons have developed in the slope north of the Baiyun Sag, playing an important role in the sedimentary processes of the middle and lower reaches of the Pearl River Canyon. These canyons display both asymmetrical V- and U-shapes along their lengths. Numerous buried channels can be identified below the modern canyons with unidirectionally migrating stacking patterns, suggesting that the canyons have experienced a cyclic evolution with several cut and fill phases of varying magnitude. These long established canyons, rather than the upper reach of the Pearl River Canyon, are the main conduits for the transport of terrigenous materials to the lower slope and abyssal basin during lowstand stage, and have contributed to the formation of vertically stacked deep-water fans in the middle reach. Canyon morphology is interpreted as a result of erosive sediment flows. The Pearl River Canyon and the 17 canyons in the slope area north of the Baiyun Sag probably have developed since the Miocene. Cenozoic tectonics, sea level change and sediment supply jointly control the morphology and sedimentary structure. The middle and lower reaches of the Pearl River Canyon developed on the paleo-terrain of the Baiyun Sag, which has been a persistently rapid depositional environment, receiving most of the materials transported via the canyons.  相似文献   

18.
The margin of the Gulf of Cadiz is swept by the deep current formed by the Mediterranean Outflow Water (MOW) flowing from the Mediterranean to the Atlantic. On the northern margin of the Gulf (Algarve Margin, South Portugal), the MOW intensity is low and fine-grained contourite drifts are built up with an alongslope development. From new sedimentological data, this study emphasizes the presence of two types of contourite drifts separated only by a deep submarine canyon incising the slope with a north-south orientation (Portimão Canyon). High-resolution seismic and bathymetry interpretation shows that on the eastern side of the canyon, the MOW forms a thick and large detached drift (Albufeira Drift) prograding toward both north and west, as shown in seismic profiles, with a high sedimentation rate. On this side of the canyon, the MOW intensity is high enough to erode the slope forming a moat channel (Alvarez Cabral). On the western side of Portimão Canyon, the MOW energy is lower, preventing moat channel erosion. Only flat and thin drift develops (Portimão and Lagos Drifts) with slow aggradation and a low sedimentation rate. This difference in drift development is due to the presence of the canyon which generates an important change in hydrodynamic of the MOW, confirmed by temperature-density measurements showing that MOW flows down Portimão Canyon. The canyon is responsible for the deviation of the direction of the MOW as it partly catches the deep-sea current flowing westward (i.e. capture phenomenon). It creates, thus, a decrease of the flow energy, competency and capacity between the east and west sides of the canyon. Through this phenomenon of MOW deep-sea current capture, the canyon constitutes a morphologic feature generating an important change in the contourite deposition pattern.In addition to already known climatic and oceanographic influences, our results show the role of canyons on contourite drift building. This study provides new elements on autocyclic factors influencing the contourite sedimentation, which are important to consider in future sedimentary paleo-reconstruction interpretations.  相似文献   

19.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   

20.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号