首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
地球物理   9篇
地质学   9篇
海洋学   14篇
天文学   10篇
综合类   1篇
  2014年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有43条查询结果,搜索用时 46 毫秒
1.
Tidal current ellipses formed by the Coriolis effect are investigated theoretically, taking account of the effect of horizontal boundaries. This study reveals that even in a narrow bay, the tidal current ellipse appears in the inside of the bottom boundary layer, although the ellipticity cannot be recognized in the outside of the boundary layer. In a wide bay, the ellipticity is observed even in the outside and it is larger in the inside. The rotation direction of these ellipses is counterclockwise in the northern hemisphere. And also, the Coriolis force has an effect to deflect the major axis of the ellipse in the inside of the boundary layer. These nature of the tidal current ellipse is well explained by the consideration of the formation mechanism of the ellipse.  相似文献   
2.
Residual currents induced by the tidal current flowing over a rotating ridge, which is infinitely elongated in they-direction and the width of which is so large that the nonlinear effect is weak enough, have been analysed theoretically. The currents are restrained by Stokes and Ekman layers which are given through a constant viscosity. This study shows that the direction of the cross-isobath residual current just above the sea floor varies with the value off *(=Coriolis parameter/tide frequency), that the along-isobath residual current forms a clockwise circulation around the rotating ridge and that it is stronger asf * grows larger.  相似文献   
3.
The structure of the tidal residual current due to vertical viscosity is investigated both theoretically and experimentally. It is found that the interaction between the vertical component of the oscillatory current and vorticity,wT 1 T 1, induces a strong residual constituent outside the boundary layer and forms a circulation which is quite similar to gravitational circulation and that the vertical profile of the oscillatory current not only affects the magnitude of the residual constituent but also decides the direction of the circulation. In the hydraulic experiment, the residual constituent is larger than the theoretical prediction and a phase difference in the oscillatory constituent between the upper and lower layer is observed. The amplitude difference is caused by the strong nonlinear effect of the residual constituent and the phase difference is caused by the interaction between the residual current and the basic oscillatory current. The principal generating force of the residual constituent outside the boundary layer,wT 1 T 1, is observed in a bay where the tide is nearly a standing wave.  相似文献   
4.
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called “type-I migration,” and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (106-107 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 105 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets (“oligarchic growth”) is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.  相似文献   
5.
Abstract. Oxidation and reduction processes can influence extent of leaching of elements from solid waste. Three samples of municipal solid waste combustion fly ash were subjected to oxidizing and reducing conditions in order to evaluate leaching of elements in the Milli-Q water and fly ash (liquid to solid ratio, 100) mixtures. Although the oxidizing and reducing conditions were applied for 6 hours only, elements like Cs, Li, Mg, Sb, Tl and V leached more under oxidizing condition than under reducing condition in the case of all three ash samples. Cadmium, Pb and Zn leached more from all samples under reducing condition than under oxidizing condition. Leaching of other elements like Al, Ba, Cr, Cu, Ni and Rb was inconsistent with oxidizing or reducing conditions and varied from sample to sample, suggesting that factors other than redox may be more important in controlling leaching of these elements. Strong acid neutralization capacity of the fly ash samples let the pH vary within a narrow range, and thus severely limited the extent of leaching during the course of the experiment. Lead and Zn were the most sensitive while K and Na were the least sensitive to changes in redox conditions.  相似文献   
6.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   
7.
The Sagami trough is located at the particular plate margin where the Izu forearc is subducted underneath the Honshu forearc. At its southeastern end, the world's only known TTT-type triple junction (Boso triple junction) has developed. Several different kinds of basins occur in different segments along the Sagami trough and at the triple junction. The bathymetric, geologic, and geophysical data obtained during the Kaiko Project and from additional studies are summarized together with our onland studies. We suggest that the right-lateral oblique plate motion formed an eduction margin in the Sagami basin, while a normal subduction margin and an oblique subduction margin have been formed in the Middle Sagami trough basin. These tectonic phenomena resulted from the long-lasting compressional covergence between the Philippine Sea plate and Eurasian plate since the early or middle Miocene. The North basin on the northeasternmost margin of the Philippine Sea plate near the Boso triple junction has developed as a stretched basin due to the westward motion of the Philippine Sea plate with respect to the Eurasian plate.  相似文献   
8.
Abstract We present data showing that the intra-oceanic shortening now occurring south of the eastern Nankai Trough that has produced the Zenisu Ridge has also been responsible for the formation of a previous ridge now buried below the continental margin. This ridge, that we refer to as Paleo-Zenisu, is presently adjacent to the backstop and its location coincides with the outer limit of the seismogenic decollement. The subduction of the paleo-Zenisu ridge below the wedge has led to its complete reorganization and has given its identity to the Great Tokai earthquake rupture zone. The formation of paleo-Zenisu and its consequent subduction has induced the tilting of the backstop toward the northwest since ca 2 Ma. This model suggests that the backstop and possibly the wedge are dextrally sheared because they are extruded southwestward in relation to the collision of the Izu-Bonin Ridge with Japan. We use the finite motion from Zenisu to paleo-Zenisu to derive both the subduction vectors along the Nankai Trough and the shortening vectors within Zenisu-Izu. The amount of shortening absorbed within Zenisu-Izu increases toward the northeast. The corresponding subduction vectors of the Zenisu platelet below the wedge decrease accordingly to the northeast from 50 to less than 20 mm/year and the Zenisu body rotates clockwise with a pole near 36° North, 139° East. This might explain the apparent longer repetition time of great earthquakes in the Tokai area. On the other hand, the 25-35 mm/year obtained for the rate of shortening along the Zenisu thrust indicates a high seismic potential there.  相似文献   
9.
Growth conditions and the resultant morphology of cosmic forsterite and enstatite particles condensed from the vapor were investigated experimentally as a function of growth temperature and supersaturation using flash-heating by CO2 laser irradiation. Forsterite particles grew dominantly, followed by a few pyroxenes. No silica minerals were observed. The forsterite morphology changed systematically depending on the temperature (T) and the vapor supersaturation (σ). As the temperature decreased and the vapor supersaturation increased, the forsterite morphology changed from a bulky type (T=1000-1450 °C, σ<97) to a platy type (T=700-1000 °C, σ=97-161), then to a columnar needle shape (T=500-820 °C, σ=131-230), and finally to a droplet type (T<500 °C, σ>230). Very thin polygonal growth steps, which suggest vapor-solid (VS) growth, were detected on the surface of the faceted bulky and platy forsterite particles. Transmission electron microscopic (TEM) observation showed that the tip of the columnar and needle-shaped forsterite was covered with an amorphous layer. This amorphous coverage illustrates that a liquid phase can be condensed from the vapor, even under the stable conditions where crystalline forsterite is stable. This amorphous layer plays a role in the vapor-liquid-solid (VLS) mechanism of the forsterite particles. The difference in the growth mechanism as a function of vapor supersaturation and temperature can be explained by metastable liquid condensation. The experimentally synthesized coexisting patterns of VS-grown and VLS-grown olivine particles resemble the pattern of matrix olivine or chondrule rims in primitive meteorites. Forsterite can crystallize more easily than either pyroxene or silica minerals, which is consistent with the dominance of forsterite in cometary dust particles, as suggested by its infrared spectrum.  相似文献   
10.
An analytical method for describing horizontal matter dispersion in shear currents is presented using a tensor expression from the point of view that matter dispersion due to the shear effect should be one of the principal mixing dilution processes. Although the behavior of horizontal dispersion is considerably more complicated than common longitudinal dispersion, the present study elucidates the vertical structure of dispersion and the dispersing process from the initial to the stationary stage, besides the usual depth-averaged dispersion coefficient at the stationary stage. As one of the typical applications of horizontal dispersion, dispersion due to the pure drift current with an Ekman layer is examined theoretically using the present method. This examination reveals that the displacement of the centroid and the major axis of dispersion are twisted in the vertical direction more than the direction of the current vector forming the Ekman spiral; that the variance increases in proportion to the third power of the elapsed time; and that the dispersion coefficient at the stationary stage remains constant, independent of the depth normalized by an Ekman layer thickness. Such dependence of the dispersion coefficient in the steady current is shown to be different from that in the oscillatory current, which is inversely proportional to the depth normalized by a Stokes layer thickness. This is considered to be induced by the difference of the vertical profiles of the first order moment in both currents, that is, the shear region of the first order moment is restricted around the floor by the alternation of the current shear in the oscillatory current while it is diffused in the whole depth in the steady current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号