首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using natural coordinates, we have derived a criterion for the inertial instability of arbitrarily meandering currents. Such currents, governed by the eccentrically cyclogeostrophic equation, are adopted as the basic current field for the parcel method. We assume that any virtual displacement which is given to a water parcel moving in the basic field has no influence on this field. From the conservation of mechanical energy for a virtual displacement we derive an inertial instability frequency ω m = [(f + 2u/r)Z]0.5 for the eccentrically cyclogeostrophic current, where f is the Coriolis parameter, u the velocity (always positive), r the radius of curvature of a streamline (negative for an anticyclonic meander), and Z the vertical component of absolute vorticity. If ω m 2 is negative, the eccentrically cyclogeostrophic current becomes unstable. Although the conventional, centrifugal instability criterion, derived from the conservation of angular momentum in a circularly symmetric current field, has a certain meaning for a monopolar vortex, it contains a radial shear vorticity that is difficult to use in arbitrarily meandering currents. The new criterion ω m 2 contains a lateral shear vorticity that is applicable to arbitrarily meandering currents. Examining instabilities of concentric rings with radii of 50–100 km, we consider reasons why the anticyclonic supersolid rotation has been very much less frequently observed than the cyclonic supersolid rotation, despite a prediction of some common stability and a rapid change in radial velocity gradient for the former. Classifying eccentric streamlines into the large and small curvature-gradient types, we point out that the large-gradient curvature in anticyclonic rings is apt to be unstable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Time-dependent wind drift currents in a basin with finite depth have been solved analytically in order to understand their fundamental behavior in coastal waters. The drift currents due to the land/sea breeze, as a typical example of time-dependent winds, have been examined with attention to the manner of their oscillation in their vertical profiles. The theoretical analysis indicates that the drift current due to the land/sea breeze might be amplified effectively around the southern part of Japan, where the oscillating period of the wind is near to the inertial period. The analysis of the physical process of the drift current reveals the following two important aspects: the Ekman boundary layer in a rotating frame is physically consistent with the Stokes boundary layer due to oscillating currents in an inertial frame, and so the inertial motion due to the wind is dispersed to the deeper level by the vertical viscosity in a rotating frame. The harmonic analysis was performed for the residual data after removal of the four main tidal constituents, M2, S2, K1 and O1, from the raw data observed in Suonada sound, the Seto Inland Sea. The feature of the analytically solved drift currents corresponded well to the observed picture. The vertical viscosity in this field has been estimated at 10−3 m2/s by adjusting the harmonically analytical result of the observed data to the vertical profile of the analytically solved drift current.  相似文献   

3.
琼州海峡冬末春初潮余流场特征   总被引:18,自引:1,他引:18  
1995年2月26日至3月6日,在琼州海峡的新海一四塘断面上,大小潮期间进行15条船同步测流.该断面上涨潮流速普遍大于落潮流速,实测最大涨潮流速为172cm/s,最大落潮流速为142cm/s;大潮期间北部6个站全层平均余流速度为18.4cm/s.海峡中间3个站0~20m层平均流速为18.3cm/s,南部6个站平均余流速度为10.2m/s.中间和北部诸站余流方向指向W一S范围,南部6个站因受地形影响,流向指向NE.用数值计算方法,再现了大小潮期间琼州海峡整个潮流场.大潮期间,通过西断面(灯楼角──玉苞角)落潮流总通量为4.73×1010m3,涨潮流总通量为4.29×1010m3;通过东断面(东营──龙塘镇)落潮流总通量为5.22×1010m3,涨潮流总通量为4.90×1010m3,其净通量,西、东断面分别为0.43×1010和0.32×1010m3,其方向指向西.  相似文献   

4.
秦皇岛海域海流特征及规模化养殖对其影响的观测研究   总被引:1,自引:1,他引:0  
秦皇岛海域是辽东湾与渤海中部及渤海湾进行物质和能量交换的重要通道。本文基于海床基观测平台获取的夏秋季海流连续观测资料,运用调和分析和滤波等方法对该海域的海流特征及其对规模化养殖的响应进行了研究。结果表明:秦皇岛海域最显著的潮流是M2分潮流,其最大流速介于20.0~36.9 cm/s之间,远小于辽东湾东部海域M2分潮流最大流速;秋季秦皇岛海域余流流速介于0.2~2.5 cm/s之间,整体上较辽东湾东侧海域余流弱,辽东湾底层可能存在逆时针的弱环流系统;夏季秦皇岛海域M2和K1分潮流的最大流速均大于秋季;养殖活动对余流影响较大,养殖区中部A7、A8站余流的垂向平均流速比养殖区边缘A6站分别减小76%和18%左右。  相似文献   

5.
While shoreface-connected sand ridges may be molded by storm-generated waves and currents, calmweather counterparts may determine their longevity in the German Bight. Fair-weather flow measurements on shoreface ridges off Spiekeroog Island show that: (1) peak velocities (U100 max) mostly range from 30 to 60 cm s–1 and are flood asymmetric, except at neap tide when ebb flows are dominant in ridge troughs; (2) velocity contrast between accelerating and decelerating flow phases is higher for ebb than flood currents, suggesting intense interaction between inlet and shoreface ebb currents; and (3) tidal currents play a primary role in ridge maintenance.  相似文献   

6.
The result of two sequential oceanographic stations of 36 hours each in the area of sand ridges are presented. One station was located in the trough between two sand ridges and the other was at the crest of a sand ridge. At these stations salinity and temperature of the sea water, currents, winds, waves, and barometric pressure were measured each hour.During the observations, a cold front passed; this generated westerly winds that grew in speed from 24 to 52 km h?1. The average height of the wind generated waves grew from 1.0 to 1.5 m and their periods increased from 7 to 10 s, and the speed of the northeast directed surface current increased from 40 to 82 cm s?1. A bottom current (also directed northeast) increased from 26 to 34 cm s?1.After the cold front had passed, the wind backed to the southeast and decreased in speed from 26 to zero km h?1. The surface current in a northwest direction decreased from 29 to 8 cm s?1. A bottom current (also directed northwest) decreased from 22 to 3 cm s?1. Later, swells from the southeast appeared and their periods increased from 5 to 9 s and their heights grew from 1.0 to 1.5 m. After 3 hours, the speeds of the surface and bottom currents increased from 8 to 72 cm s?1 and 3 to 62 cm s?1 respectively.This cold front induced strong winds and storm-wave currents able to erode sediments (assuming a threshold velocity of 20 cm s?1) and transport them in a north-northeast direction.The origin and the maintenance of these sand ridges is thought to be a function of sediments eroded from troughs and piled up at ridge crests during a storm condition. Some eroded sediments are transported north of Verga lighthouse where they are deposited on a smooth bottom.  相似文献   

7.
The horizontal structure of deep mean circulation and its seasonal variability in the Japan/East Sea (JES) were studied using profiling float and moored current meter data. The deep circulation in the Japan Basin (JB) flows cyclonically, basically following f/H contours. The correlation between the directions of deep current and f/H contour increases as |▿(f/H)| increases, reaching remarkably high correlation coefficient (>0.8) values in steep slope regions in the JB. In contrast to the JB, the deep mean circulation in the Ulleung/Tsushima Basin (UTB) is generally weak and cyclonic accompanied by sub-basin-scale cyclonic and anticyclonic eddies. The UTB shows a poorer correlation between directions of deep current and f/H contours than other basins. The time-space averaged deep mean current is about 2.8 cm/s and the volume transport in the deep layer (800 m to bottom) in the JB reaches about 10 Sv (10 × 106 m3s−1), which is about four times greater than the inflow transport through the Tsushima Straits. A salient feature is that the amplitude of deep mean current in the JB reveals a remarkable seasonal variation with a maximum in March and minimum in October. The annual range of the seasonal variation is about 30% of the mean velocity, whereas that in the southern JES (UTB and Yamato Basin) is weak.  相似文献   

8.
-A two-dimensional.nonlinear numerical model is used to study the residual current generated by tides in the East China Sea (ECS)and the South Huanghai Sea (SHS). At first, the principal semidiurnal lunar tide (M2)and the tidal current are derived in these areas. The results obtained with the model are strongly supported by the observational results available. Then, the tide-induced residual flow is determined by using the currents generated by the tidal input. The main features of the residual current in ECS and SHS are presented by analyzing the calculated results. Some of the problems are discussed such as the cause of generating residual current and the contribution of the residual current to the observed current.  相似文献   

9.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

10.
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.  相似文献   

11.
NumericalstudiesofupwellingincoastalareasoftheEastChinaSea-ⅠThetide-inducedupwellingLuoYiyong,YuGuangyao,HuangZuke(ReceivedOc...  相似文献   

12.
近70年胶州湾水动力变化的数值模拟研究   总被引:2,自引:1,他引:1  
采用无结构三角形网格海洋模式FVCOM,基于胶州湾不同年代的岸线和水深地形条件,建立胶州湾及其邻近海域各年代的三维潮汐潮流数值模型,从数值模拟角度分析和比较胶州湾不同年代纳潮量、潮汐潮流、水交换率等水动力参数的变化。结果表明:随着胶州湾水域总面积不断缩小,纳潮量在逐渐减小,2008年全湾的纳潮量相对于1935年减少了31.5%,约合3.9×108 m3;海湾流场结构变化很小,流速呈减小趋势;胶州湾欧拉余流"团团转"的多涡结构基本保持不变,最大值都发生在团岛附近;海湾的水交换能力趋弱,对整个胶州湾水体的半交换时间进行海湾平均,不同年代5套岸线下海湾的水体半交换时间分别是37.0 d,36.7 d,39.2 d,39.7 d和40.8 d。  相似文献   

13.
Current meter data collected over the last 20 years are presented and used to describe the residual currents on the Celtic and Armorican slope and shelf regions. On the slopes, a poleward current of about 6cm s−1 exists at the 500m depth contour. At mid depths, these currents are directed onslope, whereas near the bottom the flow in markedly downslope, reaching mean speeds of about 15cm s−1 near 6°40′W. The downslope currents are thought to be largely tidally induced and balanced by Stokes transports. The total slope transport near 48°N is about 4Sv. On the upper slopes (<1000m depth) the transport increases poleward. On the outer Celtic shelf, a weak (2 cm s−1) counter-current flowing southeastwards was observed. On the Armorican shelf, the residual flow is again nothwestwards and this coastal flow appears to continue northwards across the mouth of the English Chanel and past the Isles of Scilly with typical mean upper layer speeds of about 2cm s−1. Southwest of Ireland the flow is again northwesterly. Numerical model simulations show that the eastern slope boundary current of the NE Atlantic can be driven by realistic distributions of seawater density. The simulations also show only a small wind driven barotropic response on the Celtic and Armorican shelf region and that a component of the residual shelf flows, like the slope current, may be driven by pressure distributions arising from regional differences in the distribution of seawater density, or from non local wind stress.  相似文献   

14.
Tidal mixing at the Kashevarov Bank, Sea of Okhotsk, has been investigated using observations of bottom pressure and currents. The tides are dominated by the diurnal constituents. The water motion over the Bank is predominantly controlled by strong diurnal tidal currents, which bring cold water on the bank from its source, a cold intermediate layer. The temperature fluctuations are about 1.2°C at the southern edge of the bank. The maximum observed velocity is about 164 cm/s at the top of the bank. A superposition of the original diurnal constituents K1 and O1 reveals a strong fortnightly (Mf) variability of the current speed. Tidal-induced mixing is responsible for ventilation of the cold intermediate layer of the Sea of Okhotsk. Strong tidal mixing creates a well-defined tidally mixed front around the bank. This front acts like a barrier separating well-mixed water on the bank from stratified water on its flanks. There is a residual current of the order of 10 cm/s.  相似文献   

15.
The Bohai Strait is the only passage-way of the semienclosed Bohai Sea into the outer ocean. The various dynamical processes have great effects on both sides of the strait, especially on the Bohai Sea. Tidal current dominates in the strait, and among the tida! components the M, component tide is prevailing.The seawater in the strait is homogeneous vertically almost the whole year because of strong tidal mixing. The M, component tide was simulated numerically using two dimensional barotropical model, and the Eulerian tide-induced residual currents were also deduced. The results showed that the tidal currents were dominated by the coastal line and topography. There exist many eddies in the tide-induced residual current fields, particularly near the northern coast.On the basis of the simulation of the tidal currents, the movements of the water particles in the strait were tracked by means of Lagrangian techniques. Consequently the Lagrangian residual currents were obtained. Somewhat similar to the Eulerian  相似文献   

16.
The residual currents in Tokyo Bay during four seasons are calculated diagnostically from the observed water temperature, salinity and wind data collected by Unokiet al. (1980). The calculated residual currents, verified by the observed ones, show an obvious seasonal variable character. During spring, a clear anticlockwise circulation develops in the head region of the bay and a strong southwestward current flows in the upper layer along the eastern coast from the central part to the mouth of the bay. During summer, the anticlockwise circulation in the head region is maintained but the southwestward current along the eastern coast becomes weak. During autumn, the preceding anticlockwise circulation disappears but a clockwise circulation develops in the central part of the bay. During winter, the calculated residual current is similar to that during autumn. As a conclusion, the seasonal variation of residual current in Tokyo Bay can be attributed to the variation of the strength of two eddies. The first one is the anticlockwise circulation in the head region of the bay, which develops in spring and summer and disappears in autumn and winter. The second one is the clockwise circulation in the central part of the bay, which develops in autumn and winter, decreases in spring and nearly disappears in summer.  相似文献   

17.
Simultaneous wind, wave, and current data during 21 storms spanning four winters at Tromsøflaket (230 m depth) were analysed to determine joint probabilities of occurrence. Waves were measured with a Waverider Buoy, winds with a recording anemometer onboard a vessel and currents at up to five depths with Aandera RCM-4 current meters. Measured currents were filtered to separate tidal currents from residual currents. In most of the statistical analyses, the actual current profiles were replaced with a simplified “equivalent” profile (constant above 50 m depth) whose magnitude was chosen to give the same drag load on a single pile as the actual profile when both profiles were combined with wave orbital velocities. The data suggest that the equivalent current is weakly correlated with the wave height. Within the range of the data analysed, an in-line equivalent residual current of 30 cm sec−1 is adequate for design drag force calculations.The data presented here are used to illustrate a procedure for data analysis and are not suitable for use as design criteria.  相似文献   

18.
Photogrammetric measurements of dye dispersion in a high-energy surf zone provided semi-quantitative measurements of the pattern and flux of water exchange between the surf zone and nearshore. The intensity of current flow, the rip morphology and its position within the surf zone have important ecological implications for the surf zone and nearshore biota. A variety of water-movement patterns was found, ranging from currents which remained confined to the beach terrace to those which involved substantial exchange across the breaker line. In considering rips as exchange mechanisms, two rip types are recognized. Depending on the exchange of water across the breaker line, a rip may be classified as ‘exchange’ or ‘non-exchange’. The ecological significance of these current types is discussed and a classification scheme for rip currents is proposed. Offshore fluxes across the breaker line by rip currents ranged from negligible to 80 m3s−1 rip−1. The estimated maximum flux per running meter of the Sundays River Beach was calculated as 0·0.32m 3 s−1. The half-residence period of surf-zone water ranged from as little as 22 min t0 5 days, averaging 3·6 h.A dichotomy of current patterns found between the water column and surface layers is used to explain the build up of a concentration gradient in cell numbers of the surf diatom Anaulus birostratus within the surf zone despite extensive flushing by surf circulation.  相似文献   

19.
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.  相似文献   

20.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号