首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract— Most studies of Tagish Lake have considered features that were either strongly affected by or formed during the extensive hydrous alteration experienced by this meteorite. This has led to some ambiguity as to whether Tagish Lake should be classified a CI, a CM, or something else. Unlike previous workers, we have focused upon the primary, anhydrous component of Tagish Lake, recovered through freeze‐thaw disaggregation and density separation and located by thin section mapping. We found many features in common with CMs that are not observed in CIs. In addition to the presence of chondrules and refractory forsterite (which distinguish Tagish Lake from the CIs), we found hibonite‐bearing refractory inclusions, spinel‐rich inclusions, forsterite aggregates, Cr‐, Al‐rich spinel, and accretionary mantles on many clasts, which clearly establishes a strong link between Tagish Lake and the CM chondrites. The compositions of isolated olivine crystals in Tagish Lake are also like those found in CMs. We conclude that the anhydrous inclusion population of Tagish Lake was, originally, very much like that of the known CM chondrites and that the inclusions in Tagish Lake are heavily altered, more so than even those in Mighei, which are more heavily altered than those in Murchison.  相似文献   

2.
Abstract— In this paper we describe the recovery, handling and preliminary mineralogical investigation of the Tagish Lake meteorite. Tagish Lake is a type 2 carbonaceous chondrite which bears similarities to CI1 and CM chondrite groups, but is distinct from both. Abundant phyllosilicates as well as chondrules (however sparse) and common olivine grains in the matrix preclude any other classification. The bulk density of Tagish Lake (1.67 g/cc) is far lower than CI or CM chondrites (2.2‐2.3 and 2.6‐2.9 g/cc, respectively), or any other meteorite for that matter. We have identified two lithologies: a dominant carbonate‐poor lithology and a less‐abundant carbonate‐rich lithology. The meteorite is a breccia at all scales. We have noted similarities between Tagish Lake and some clasts within the enigmatic meteorite Kaidun; possibly there are genetic relationships here worth exploring. In the paper we describe a clast of CM1 material within Tagish Lake which is very similar to a major lithology in Kaidun.  相似文献   

3.
Abstract– We have carried out a sample‐correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high‐resolution powder X‐ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Thermal infrared (400–4500 cm−1, 2.2–25.0 μm) spectra of the same samples were obtained using diffuse (biconical) reflectance infrared Fourier transform spectroscopy (DRIFTS). Our results are in good agreement with previous studies of the mineralogy of the Tagish Lake meteorite; we find however that Tagish Lake is more varied in major mineralogy than has previously been reported. In particular, we observed two new distinct lithologies, an inclusion‐poor magnetite‐ and sulfide‐rich lithology, and a carbonate‐rich, siderite‐dominated lithology in addition to the previously documented carbonate‐rich and carbonate‐poor lithologies. Grain density for each Tagish Lake sample was calculated from the measured mineral modal abundances and known mineral densities. For powders from three originally intact inclusion‐rich samples, the calculated grain density is 2.77 ± 0.05 g cm−3, in excellent agreement with those reported in the literature for other intact inclusion‐rich Tagish Lake samples. Tagish Lake disaggregated samples have a significantly higher calculated grain density due to their lower saponite‐serpentine content, likely a result of mineral separation in the meltwater holes from which they were collected; the disaggregated samples may not therefore adequately represent bulk samples of the Tagish Lake meteorite. The predominance of very fine‐grained material in the Tagish Lake samples investigated in this study is expected to produce infrared spectra representative of asteroidal regolith. Gypsum and talc have been found by XRD in powders from the inclusion‐rich, intact Tagish Lake samples in this study, and may have been present in the parent body; if present, these hydrous sulfates would complicate the interpretation of possible hydrated mineral features in asteroid infrared spectra.  相似文献   

4.
Abstract— The Dong Ujimqin Qi mesosiderite is the first recorded fall of a stony‐iron meteorite in China. According to silicate textures and metal composition, this meteorite is classified as a member of subgroup IB. Instrumental neutron activation analyses (INAA) of metals show that the matrix metal has lower concentrations of Os, Ir, Re, and Pt, but higher concentrations of Ni and Au than the 7.5 cm metal nodule present in the meteorite. We attribute these compositional differences to fractional crystallization of molten metal. Studies of olivine clasts show that FeO contents are uniform in individual olivine crystals but are variable for different olivine clasts. Although concentrations of rare earth elements (REEs) change within olivine clasts, they all exhibit a vee‐shaped pattern relative to CI chondrites. The relatively high concentrations of REEs in olivine and the shape of REE patterns require a liquid high in REEs and especially in light REEs. As such a liquid was absent from the region where basaltic and gabbroic clasts formed, mesosiderite olivine must have formed in a part of the differentiated asteroid that is different from the location where other mesosiderite silicate clasts formed.  相似文献   

5.
Abstract— Two unusual dark clasts found in the Vigarano CV3 chondrite were examined using an optical microscope and a scanning electron microscope (SEM). Both clasts lack chondrules, Ca-Al-rich inclusions, and coarse-grained mineral fragments; they, instead, contain abundant inclusions that consist of fine grains (<1 μm) of homogeneous Fe-rich olivine, thus resembling the fine-grained variety of dark inclusions in CV3 chondrites. The external shapes of inclusions in the clasts bear a close resemblance to those of chondrules and chondrule fragments; some of the inclusions are surrounded by dark rims similar to chondrule rims. Our SEM observations reveal the following unusual characteristics: 1) the inclusions are not mere random aggregates of olivine grains but have peculiar internal textures, that is, assemblages of round or oval shaped outlines, which are suggestive of pseudomorphs after porphyritic olivine chondrules; 2) one of thick inclusion rims contains a network of vein-like strings of elongated olivine grains; 3) an Fe-Ni metal aggregate in one of the clasts has an Fe-, Ni-, S-rich halo suggesting a reaction between its precursor and the surrounding matrix; and 4) olivine in the clasts commonly shows a swirly, fibrous texture similar to that of phyllosilicate. These characteristics suggest that the dark clasts in Vigarano are not primary aggregates of dust in the solar nebula but were affected by aqueous alteration and subsequent dehydration by heating after accretion to the meteorite parent body. The fine olivine grains in these clasts were presumably produced by thermal transformation of phyllosilicate, as is the case with those in the two thermally metamorphosed Antarctic CM chondrites, Belgica-7904 and Yamato-86720. From textural and mineralogical similarities, some of the dark inclusions and clasts previously reported from CV3 chondrites and other types of meteorites may have origins common with these clasts in Vigarano.  相似文献   

6.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

7.
Abstract— Two rare, spinel-bearing, Al-rich chondrules have been identified in new chondrite finds from Roosevelt County, New Mexico—RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies, dominated by highly and asymmetrically zoned, Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning—fractional crystallization or metamorphism. It appears that fractional crystallization formed the zoning of the trivalent cations (Al, Cr) and caused a localized depletion in chromites around the large Al-Cr-rich spinels. The origin of the zoning of the divalent cations (Fe, Mg, Zn) is less certain. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent body metamorphism can explain the asymmetric zoning of these elements. Unfortunately, appropriate studies of natural and experimental systems to evaluate the formation of zoning of the divalent cations by fractional crystallization have not yet been conducted. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. Melting of rare and unusual precursors produced the compositions of Na-Al-Cr-rich chondrules, possibly including a spinel-rich precursor enriched in Cr2O3 and ZnO. The two chondrules we studied have larger modal abundances of Al-Cr-rich spinels than reported in other Na-Al-Cr-rich chondrules of similar composition, and Al-rich chondrules even more enriched in spinel are reported in the literature. These differences indicate that factors other than bulk composition control the mineralogy of the chondrules. The most important of these factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions. The range of mineralogies in other Al-rich chondrules of similar composition reflect a range of peak temperatures and cooling rates. We see no reason to believe that this range is fundamentally different from the range of thermal histories experienced by “normal” Fe-Mg-rich chondrules.  相似文献   

8.
Abstract— In addition to the Mg‐, Al‐, 16O‐rich spinels that are known to occur in refractory inclusions, the Murchison meteorite contains Cr‐rich, 16O‐poor spinels, most of whose sources are unknown because they are rarely found in situ. Here we report the in situ occurrence in Allende of Cr‐rich spinels, found in 13 chondrules and 4 “olivine‐rich objects”. The Allende spinels exhibit major and minor element contents, isotopic compositions, and zoning of Cr2O3 contents like those of the Cr‐spinels from Murchison. Some chondrules contain patchy‐zoned spinel (Simon et al., 1994), which suggests that such grains did not form by sintering but perhaps by formation of overgrowths on relic grains. Unlike the olivine‐rich objects, phases in all three chondrules that were analyzed by ion microprobe have uniform, near‐normal O‐isotopic compositions. One olivine‐rich object, ALSP1, has a huge (1 mm) fragment of chevron‐zoned spinel. This spinel has near‐normal O‐isotopic compositions that are quite distinct from those of adjacent forsteritic olivine, which are relatively 16O‐rich and plot on the calcium‐aluminum‐inclusion (CAI) line, like some isolated forsterite grains found in Allende. The spinel and olivine in this object are therefore not genetically related to each other. Another olivine‐rich object, ALSP11A, contains a rectangular, 150 ×s 100 μm, homogeneous spinel grain with 50 wt% Cr2O3 and 23 wt% FeO in a vuggy aggregate of finer‐grained (5–90 μm), FeO‐rich (Fo47–55) olivine. The magnesian core of one olivine grain has a somewhat 16O‐rich isotopic composition like that of the large spinel, whereas the FeO‐rich olivine is relatively 16O‐poor. The composition of the spinel in ALSP11A plots on the CAI line, the first Cr‐rich spinel found to do so. Chevron‐zoned spinel has not been observed in chondrules, and it is unlikely that either ALSP1 or ALSP11A were ever molten. Calculations show that a spinel with the composition of that in ALSP1 can condense at 1780 K at a Ptot of 10?3 atm and a dust/gas ratio of 100 relative to solar. The Cr‐rich spinel in ALSP11A could condense at ~1420 K, but this would require a dust/gas enrichment of 1000 relative to solar. The data presented here confirm that, as in Murchison, the coarse Cr‐rich spinels in Allende are relatively 16O‐depleted and are isotopically distinct from the 16O‐enriched MgAl2O4 from CAIs. Sample ALSP11A may represent a third population, one that is Cr‐rich and plots on the CAI line. That the O‐isotopic composition of ALSP1 is like those of Cr‐rich spinels from chondrules indicates that O‐isotopic compositions cannot be used to distinguish whether grains from such unequilibrated objects are condensates or are fragments from a previous generation of chondrules.  相似文献   

9.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

10.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms.  相似文献   

11.
Abstract— The maximum diameter of chromite (FeCr2O4) grains within L chondrites reflects the petrographic type of the sample. On the basis of our measurements of nine recent L chondrites, L3 chromite Dmax = 34–50 μm, L4 = 87–150 μm, L5 = 76–158 μm, and L6 = 253–638 μm. This variation reflects the crystallization of the chromite grains during parent body thermal metamorphism. We use this calibration to classify six fossil meteorites from the Middle Ordovician in Sweden as type 3 (or 4) to 6. The high flux of L chondrites at 470 Ma contained a range of petrographic types and may have had a higher proportion of lower petrographic type meteorites than are found in recent L chondrite falls. The fossil meteorites have in places preserved recognizable chondrule textures, including porphyritic olivine, barred olivine, and radiating pyroxene. A large relict clast and fusion crust have also been tentatively identified in one fossil meteorite. Apart from chromite, all of the original meteorite minerals have been replaced by carbonate (and sheet silicate and sulfate) during diagenesis within the limestone host. The preservation of chondrule definition has allowed us to measure the mean diameters of relict chondrules. The range (0.4–0.6 mm) is consistent with measurements made in the same way on recent L chondrites.  相似文献   

12.
Abstract— The Tagish Lake carbonaceous chondrite consists of heavily aqueously altered chondrules, CAIs, and larger mineral fragments in a fine‐grained, phyllosilicate‐dominated matrix. The vast majority of the coarse‐grained components in this meteorite are surrounded by continuous, 1.5 to >200 μm wide, fine‐grained, accretionary rims, which are well known from meteorites belonging to petrological types 2 and 3 and whose origin and modification is still a matter of debate. Texturally, the fine‐grained rims in Tagish Lake are very similar throughout the entire meteorite and independent of the nature of the enclosed object. They typically display sharp boundaries to the core object and more gradational contacts to the meteorite matrix. Compared to the matrix, the rims are much more finegrained and characterized by a significantly lower porosity. The rims consist of an unequilibrated assemblage of phyllosilicates, Fe,Ni sulfides, magnetites, low‐Ca pyroxenes, and forsteritic olivines, and are, except for a much lower abundance of carbonates, very similar to the Tagish Lake matrix. Electron microprobe and synchrotron X‐ray microprobe analyses show that matrix and rims are also very similar in composition and that the rims differ significantly from matrix and bulk meteorite only by being depleted in Ca. X‐ray elemental mapping and mineralogical observations indicate that Ca was lost during aqueous alteration from the enclosed objects and preferentially crystallized as carbonates in the porous matrix. The analyses also show that Ca is strongly fractionated from Al in the rims, whereas there is no fractionation of the Ti/Al‐ratios. Our data suggest that the fine‐grained rims in Tagish Lake initially formed by accretion in the solar nebula and were subsequently modified by in situ alteration on the parent body. This pervasive alteration removed any potential evidence for pre‐accretionary alteration but did not change the overall texture of the Tagish Lake meteorite.  相似文献   

13.
A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay‐rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic olivine chondrules enclosed in matrices that have the characteristic platy olivine texture, matrix olivine composition, and mineralogy (olivine, pentlandite, nickel‐rich iron‐nickel metal, nepheline, and calcic pyroxene [diopside‐hedenbergite solid solution]) of oxidized‐subgroup CV3 chondrites. A few grains are fine‐grained spinel‐rich calcium‐aluminum‐rich inclusions with mineral oxygen isotopic compositions again typical of such objects in CV3 chondrites. The chondritic and CAI grains contain small fragments of metallic copper‐aluminum‐iron alloys that include the quasicrystalline phase icosahedrite. One grain is an achondritic intergrowth of Cu‐Al metal alloys and forsteritic olivine ± diopsidic pyroxene, both of which have meteoritic (CV3‐like) oxygen isotopic compositions. Finally, some grains consist almost entirely of metallic alloys of aluminum + copper ± iron. The Cu‐Al‐Fe metal alloys and the alloy‐bearing achondrite clast are interpreted to be an accretionary component of what otherwise is a fairly normal CV3 (oxidized) chondrite. This association of CV3 chondritic grains with metallic copper‐aluminum alloys makes Khatyrka a unique meteorite, perhaps best described as a complex CV3 (ox) breccia.  相似文献   

14.
Abstract— We describe the petrologic and trace element characteristics of the Yamato 86029 (Y‐86029) meteorite. Y‐86029 is a breccia consisting of a variety of clasts, and abundant secondary minerals including coarse‐ and fine‐grained phyllosilicates, Fe‐Ni sulfides, carbonates, and magnetite. There are no chondrules, but a few anhydrous olivine‐rich grains are present within a very fine‐grained phyllosilicate‐rich matrix. Analyses of 14 thermally mobile trace elements suggest that Y‐86029 experienced moderate, open‐system thermal metamorphism. Comparison with data for other heated carbonaceous chondrites suggests metamorphic temperatures of 500–600°C for Y‐86029. This is apparent petrographically, in partial dehydration of phyllosilicates to incompletely re‐crystallized olivine. This transformation appears to proceed through ‘intermediate’ highly‐disordered ‘poorly crystalline’ phases consisting of newly formed olivine and residual desiccated phyllosilicate and their mixtures. Periclase is also present as a possible heating product of Mg‐rich carbonate precursors. Y‐86029 shows unusual textures rarely encountered in carbonaceous chondrites. The periclase occurs as unusually large Fe‐rich clasts (300–500 μm). Fine‐grained carbonates with uniform texture are also present as small (10–15 μm in diameter), rounded to sub‐rounded ‘shells’ of ankerite/siderite enclosing magnetite. These carbonates appear to have formed by low temperature aqueous alteration at specific thermal decomposition temperatures consistent with thermodynamic models of carbonate formation. The fine and uniform texture suggests crystallization from a fluid circulating in interconnected spaces throughout entire growth. One isolated aggregate in Y‐86029 also consists of a mosaic of polycrystalline olivine aggregates and sulfide blebs typical of shock‐induced melt re‐crystallization. Except for these unusual textures, the isotopic, petrologic and chemical characteristics of Y‐86029 are quite similar to those of Y‐82162, the only other heated CI‐like chondrite known. They were probably derived from similar asteroids rather than one asteroid, and hence may not necessarily be paired.  相似文献   

15.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   

16.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

17.
Abstract— Chondrules in the Bali-like CV chondrite Kaba and the Allende-like portion of the Mokoia breccia have been studied to explore the relationship between hydrous alteration to form phyllosilicates and anhydrous alteration resulting in secondary olivine zonation, replacement of enstatite by ferroan olivine and formation of feldspathoids (nepheline and sodalite). All Kaba chondrules experienced extensive hydrous alteration; whereas, anhydrous alteration was minor and resulted only in the olivine zonation. On the other hand, all of the Mokoia chondrules experienced both extensive anhydrous and hydrous alteration. Bronzite rims formed between relic enstatite grains and phyllosilicates in both Kaba and Mokoia during the hydrous alteration. Petrographic observations indicate that phyllosilicates in Mokoia postdate formation of the secondary ferroan olivine and feldspathoids. We conclude that anhydrous alteration in Kaba and Mokoia predated hydrous alteration and took place before accretion of chondrules into the CV parent asteroid.  相似文献   

18.
Abstract— Dynamic crystallization experiments performed with different container materials (Fe crucible, pure Pt wire loop, presaturated Pt wire loop) demonstrate the strong influence of Fe loss on texture, mineralogy and chemical zoning in olivine. The use of pure Pt wire loops results in severe Fe loss and prevents the development of strong Fe/Mg zoning in olivine in slower cooled runs (≤ 100 °C/h). Presaturated Pt wire loops reduce Fe loss to some extent but not completely. If severe Fe loss from the melt is avoided by the use of Fe crucibles, then cooling rates between 2000 and 1.2 °C/h yield textures, modal mineral abundances and Fe/Mg zoning in olivine comparable to natural porphyritic olivine chondrules. However, Fe gain from the crucible may possibly enhance Fe/Mg zoning in olivine for cooling rates < 10 °C/h. Therefore, it is concluded that the lower limit of cooling rates of porphyritic olivine chondrules derived from dynamic crystallization experiments is 10 °C/h, perhaps it is even lower, on the order of a few degrees Celsius per hour. This value is not significantly different from estimates for subsolidus temperatures based on the microstructure of chondrule minerals (Weinbruch and Müller, 1995). The lower limit of chondrule cooling rates of 100 °C/h advocated by Hewins (1988) and Radomsky and Hewins (1990) seems to be an artifact of the experimental technique, as their samples were crystallized in pure Pt wire loops.  相似文献   

19.
Abstract There are two types of glass-rich chondrules in unequilibrated ordinary chondrites (OC): (1) porphyritic chondrules containing 55–85 vol% glass or microcrystalline mesostasis and (2) nonporphyritic chondrules, containing 90–99 vol% glass. These two types are similar in mineralogy and bulk composition to previously described Al-rich chondrules in OC. In addition to Si-, Al- and Na-rich glass or Ca-Al-rich microcrystalline mesostasis, glass-rich chondrules contain dendritic and skeletal crystals of olivine, Al2O3-rich low-Ca pyroxene and fassaite. Some chondrules contain relict grains of forsterite ± Mg-Al spinel. We suggest that glass-rich chondrules were formed early in nebular history by melting fine-grained precursor materials rich in refractory (Ca, Al, Ti) and moderately volatile (Na, K) components (possibly related to Ca-Al-rich inclusions) admixed with coarse relict forsterite and spinel grains derived from previously disrupted type-I chondrules.  相似文献   

20.
Abstract— –The CH/CB‐like chondrite Isheyevo consists of metal‐rich (70–90 vol% Fe,Ni‐metal) and metal‐poor (7–20 vol% Fe,Ni‐metal) lithologies which differ in size and relative abundance of Fe,Ni‐metal and chondrules, as well as proportions of porphyritic versus non‐porphyritic chondrules. Here, we describe the mineralogy and petrography of Ca,Al‐rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) in these lithologies. Based on mineralogy, refractory inclusions can be divided into hibonite‐rich (39%), grossite‐rich (16%), melilite‐rich (19%), spinel‐rich (14%), pyroxene‐anorthite‐rich (8%), fine‐grained spinel‐rich CAIs (1%), and AOAs (4%). There are no systematic differences in the inclusion types or their relative abundances between the lithologies. About 55% of the Isheyevo CAIs are very refractory (hibonite‐rich and grossite‐rich) objects, 20–240 μm in size, which appear to have crystallized from rapidly cooling melts. These inclusions are texturally and mineralogically similar to the majority of CAIs in CH and CB chondrites. They are distinctly different from CAIs in other carbonaceous chondrite groups dominated by the spinel‐pyroxene ± melilite CAIs and AOAs. The remaining 45% of inclusions are less refractory objects (melilite‐, spinel‐ and pyroxene‐rich CAIs and AOAs), 40–300 μm in size, which are texturally and mineralogically similar to those in other chondrite groups. Both types of CAIs are found as relict objects inside porphyritic chondrules indicating recycling during chondrule formation. We infer that there are at least two populations of CAIs in Isheyevo which appear to have experienced different thermal histories. All of the Isheyevo CAIs apparently formed at an early stage, prior to chondrule formation and prior to a hypothesized planetary impact that produced magnesian cryptocrystalline and skeletal chondrules and metal grains in CB, and possibly CH chondrites. However, some of the CAIs appear to have undergone melting during chondrule formation and possibly during a major impact event. We suggest that Isheyevo, as well as CH and CB chondrites, consist of variable proportions of materials produced by different processes in different settings: 1) by evaporation, condensation, and melting of dust in the protoplanetary disk (porphyritic chondrules and refractory inclusions), 2) by melting, evaporation and condensation in an impact generated plume (magnesian cryptocrystalline and skeletal chondrules and metal grains; some igneous CAIs could have been melted during this event), and 3) by aqueous alteration of pre‐existing planetesimals (heavily hydrated lithic clasts). The Isheyevo lithologies formed by size sorting of similar components during accretion in the Isheyevo parent body; they do not represent fragments of CH and CB chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号