首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water resource and its change of mountainous area are very important to the oasis economic system and ecosystem in the arid areas of northwest China. Accurately understanding the water transfer and circulation process among vegetation, soil, and atmosphere over different hydrological units in mountainous areas such as snow and ice, cold desert, forest and grassland is the basic scientific issue of water research in cold and arid regions, which is also the basis of water resource delicacy management and regulation. There are many research results on the hydrological function of different land covers in mountain areas, basin hydrological processes, however, there are only very limited studies on the water internal recycle at basin scale. The quantitative study on the mechanism of water internal recycle is still at the starting stage, which faces many challenges. The key project “Study on water internal recycle processes and mechanism in typical mountain areas of inland basins, Northwest China” funded by National Natural Science Foundation of China will select the Aksu River and Shule River Basin, which have better observation basis, as study area. The internal mechanism of moisture transfer and exchange process of different land cover and atmosphere, the internal mechanism of water cycle in the basin, and water transfer paths in atmosphere will be studied through enhancing runoff plot experiments on different land cover, analyzing the mechanism of water vapor transfer and exchange between different land covers in the watershed by isotope tracing on the water vapor flux of vegetation water, soil moisture and atmospheric moisture, improving the algorithms of remote sensing inversion and ground verification on land surface evapotranspiration on different land cover, and analyzing the water vapor flux from reanalysis data, and the coupling modeling of regional climate model and land surface process model. At last, the effect of different land cover in hydrological process of mountain area, and the impact of land cover on downstream oasis will be systematically analyzed.  相似文献   

2.
植物生物条件下荒漠土壤水分预报的数学模型   总被引:2,自引:2,他引:2  
通过对生长了3a的荒漠植物骆驼刺的根系分布规律及不同深度土壤含水量分布资料的研究,利用动态模拟方程,分析了骆驼刺根系吸水的分布规律,以及根系吸水与其影响因素之间的关系,用多元回归分析方法拟合了骆驼刺根系吸水的数学模型,利用所得到的骆驼刺根系吸水模式对实验地的土壤水分动态进行了模拟,模拟值与实测值比较表明结果具有一定的精度。  相似文献   

3.
In this study, we tried to model the processes of moisture and heat transfers in the soil–vegetation–atmosphere system in an integrated comprehensive way. The purpose of the study is to simulate profiles of soil water content and temperature at root active zone (i.e., 0–50 cm), taking the root water uptake, soil evaporation, and canopy transpiration into account. The water and heat transfer equations are solved by an iterative Newton–Raphson technique and a finite difference method is used to solve the governing equations. Soil water content and soil temperature dynamics could be simulated rather accurately in a cropped field on Loess Plateau area. The water and heat transfer flux predicted by the classical theory of Philip and de Vries (Tans Am Geophys Union 38:222–232, 1957) slightly overestimated near the surface and underestimated at the deeper depths, as a result of the overestimated soil evaporation at the top soil layer (0–10 cm) and underestimated crop canopy transpiration at the deeper depths (10–50 cm). Water content tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). Soil temperatures during the simulated period was slightly overestimated in the nighttimes and underestimated in the daytimes, as a result of the underestimated soil water content at the top soil layer (0–10 cm) and overestimated at the deeper depths (10–50 cm). Soil temperatures tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). While the sum of the water and heat regimes yielded a much better match with the soil water content and soil temperature obtained from the field observations. The results obtained show that the model coupled water and heat transfer is able to capture the dynamics of soil water content.  相似文献   

4.
介绍了青藏高原水文模拟的研究现状和发展趋势。水文模拟是研究水文过程的主要手段,可为流域水资源管理及防灾减灾提供理论和决策支持。国际上第一代水文模型为"集总式",第二代水文模型为"分布式",但它们大都以描述降水—产流的水分输移为主("水圈"),未仔细考虑陆—气水热交换中植被的调节作用("生物圈—大气圈")。近10年来,在气候变化的背景下,随着大气科学以及生态学的蓬勃发展,分布式水文模型开始描述生物圈—大气圈相互作用;通过改进陆—气间的水热交换过程以及植被的生理过程,实现了对流域水圈—生物圈—大气圈的综合模拟。然而,针对显著受冰冻圈过程影响的青藏高原,需要深入研究冰冻圈与其他圈层(水圈/生物圈/大气圈)的相互作用机理,并实现其在水文模拟中的参数化,以提升区域水资源和水灾害的预测能力。  相似文献   

5.
Normalized difference vegetation index (NDVI) is an important indicator for measuring vegetation coverage, which is of great significance for evaluating vegetation dynamics and vegetation restoration. It can clearly analyze the suitable growth condition of vegetation by studying the relationship between meteorological factors, soil moisture and NDVI. Based on MODIS/NDVI data, the spatio-temporal characteristics of vegetation coverage in the Weihe River Basin (WRB) were analyzed by the trend analysis method. The relationship of NDVI with meteorological factors and NDVI with soil moisture simulated by the soil and water assessment tool (SWAT) model was analyzed in this paper. The results show that NDVI values gradually change with an increase from north to south in the WRB. The maximum of the average monthly NDVI is 0.702 (August) and the minimum is 0.288 in February from 2000 to 2015. The results of the seven grades of NDVI trend line slope indicate that the improvement area of vegetation coverage accounts for 30.93% of the total basin, and the degradation area and basically unchanged area account for 23% and 42.9%, respectively. The annual mean soil moisture is 19.37% in the WRB. There was a strong correlation between NDVI and precipitation, temperature, evaporation and soil moisture, and the correlation coefficients were 0.78, 0.89, 0.71 and 0.65, respectively. The ranges of the most suitable growth conditions for vegetation are 80–145 mm (precipitation), 13–23 °C (temperature), 94–144 mm (evaporation) and 25–33% (soil moisture), respectively.  相似文献   

6.
Three soil profiles were selected in the Ejina Oasis, northwest China, to determine water content profiles and evolution of soil moisture potentials in the unsaturated zone within the arid area. The total soil moisture potentials have been monitored for about 3 months in 2001 at different depths in the soil profiles. The occurrence and movement of water in the unsaturated zone was analyzed using the zero flux plane (ZFP) method. It is shown that convergent ZFPs and divergent ZFPs may occur at depths between 0.5 and 3.0 m, and that the depth of the ZFPs was controlled by the root zone of plants growing on the land surface. Profiles of the total soil moisture potentials were observed to be coincident with those of the water contents at the three experimental sites. The total soil moisture potential showed a slight increasing trend and the ZFPs tend to vanish from summer to winter as the water extraction by roots decreased. Evapotranspiration through vegetation has an important bearing on the water content and the total potential in the unsaturated zone.  相似文献   

7.
Mining affects the environment in different ways depending on the physical context in which the mining occurs. In mining areas with an arid environment, mining affects plants’ growth by changing the amount of available water. This paper discusses the effects of mining on two important determinants of plant growth—soil moisture and groundwater table (GWT)—which were investigated using an integrated approach involving a field sampling investigation with remote sensing (RS) and ground-penetrating radar (GPR). To calculate and map the distribution of soil moisture for a target area, we initially analyzed four models for regression analysis between soil moisture and apparent thermal inertia and finally selected a linear model for modeling the soil moisture at a depth 10 cm; the relative error of the modeled soil moisture was about 6.3% and correlation coefficient 0.7794. A comparison of mined and unmined areas based on the results of limited field sampling tests or RS monitoring of Landsat 5-thermatic mapping (TM) data indicated that soil moisture did not undergo remarkable changes following mining. This result indicates that mining does not have an effect on soil moisture in the Shendong coal mining area. The coverage of vegetation in 2005 was compared with that in 1995 by means of the normalized difference vegetation index (NDVI) deduced from TM data, and the results showed that the coverage of vegetation in Shendong coal mining area has improved greatly since 1995 because of policy input RMB¥0.4 per ton coal production by Shendong Coal Mining Company. The factor most affected by coal mining was GWT, which dropped from a depth of 35.41 m before mining to a depth of 43.38 m after mining at the Bulianta Coal Mine based on water well measurements. Ground-penetrating radar at frequencies of 25 and 50 MHz revealed that the deepest GWT was at about 43.4 m. There was a weak water linkage between the unsaturated zone and groundwater, and the decline of water table primarily resulted from the well pumping for mining safety rather than the movement of cracking strata. This result is in agreement with the measurements of the water wells. The roots of nine typical plants in the study area were investigated. Populus was found to have the deepest root system with a depth of about 26 m. Based on an assessment of plant growth demands and the effect of mining on environmental factors, we concluded that mining will have less of an effect on plant growth at those sites where the primary GWT depth before mining was deep enough to be unavailable to plants. If the primary GWT was available for plant growth before mining, especially to those plants with deeper roots, mining will have a significant effect on the growth of plants and the mechanism of this effect will include the loss of water to roots and damage to the root system.  相似文献   

8.
Physical processes are at the root of determining hydrologic response at all scales. Here, the physical mechanisms linking (1) subsurface heterogeneities to soil moisture and (2) resulting land-surface energy feedbacks to the atmosphere, are examined at the hillslope scale using a fully coupled surface-subsurface-land-surface model, ParFlow. A hillslope with a heterogeneous subsurface and uniform topography was modeled numerically using summer atmospheric conditions and a single precipitation event under controlled boundary conditions in order to isolate the contribution of hydraulic conductivity to land-surface hydrological processes and energy interactions. Patterns of subsurface hydraulic conductivity are shown to govern soil-moisture distribution at the hillslope scale following precipitation. This variability in soil moisture is closely linked to the variability in land-surface energy feedbacks. The role that vegetation plays in subsurface soil moisture and land energy communications is also examined. Results show that hillslope soil moisture variation is first established by patterns in vertical hydraulic conductivity, while later on in the dry-down period, vegetation exerts greater control on the land-surface energy fluxes and controls the rate of hillslope dry down. Furthermore, as compared to bare-soil simulations, grass-cover simulations show an increase in near-surface soil moisture despite water up-take along the rooting depth.  相似文献   

9.
浅层包气带水汽昼夜运移规律及其数值模拟研究   总被引:3,自引:0,他引:3  
西北干旱、半干旱地区,浅层包气带水分通量主要由水汽组成,而水汽在运移过程中产生的能量转换和质量迁移是地表质能平衡计算不可缺少的重要源汇项。在野外进行一个沙坑实验,发现土壤水在中午(12:00—15:00)达到最大值(10cm深度,5.9~6.1cm3/cm3;30cm深度,11.9~13.1cm3/cm3),而在凌晨(02:00—05:00)出现最小值(10cm深度,4.4~4.5cm3/cm3;30cm深度,10.4~10.8cm3/cm3)。为进一步验证该实验条件下的土壤水运移及分布规律,考虑了土壤水、汽、热耦合运移的HYDRUS-1D模型被用来对实验过程进行模拟,模拟结果与实测结果吻合较好。为描述土壤水分昼夜运移模式,笔者将土壤水耦合运移的时间信息和空间信息进行同步分析;并根据土壤水运移的不同驱动力,分别对温度梯度、基质势梯度作用下的液态水及汽态水通量进行了分析。  相似文献   

10.
干旱区流域生态水文耦合模拟与调控的若干思考   总被引:5,自引:1,他引:4  
系统识别全球变化和高强度人类活动影响下干旱区流域生态水文耦合作用机制及演变规律,并通过综合生态水文调控,构建健康水循环和生态安全格局,是干旱区流域亟待解决的关键科学问题。传统的基于水文过程与生态过程的分离模拟与调控,尚不能满足上述实践需求;需结合原型观测与实验,对大气模式、水文模型、生态模式(包括天然生态模拟模型和作物生长模式)进行耦合开发,构建具有统一物理机制的流域生态水文模型。以此为支撑,对干旱区流域生态水文过程演变规律及阈值特征进行系统识别;并结合水生态服务功能评价,提出流域生态安全修复及水资源合理配置与调度方案;制定有效的风险管理措施,对流域生态水文过程进行动态调控。  相似文献   

11.
The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971–2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971–2010).  相似文献   

12.
松嫩平原典型黑土分布区土壤呼吸研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘国栋  杨柯  崔玉军  李瑛 《地学前缘》2011,18(6):101-106
在松嫩平原典型黑土分布区,选择耕地、休耕地、自然荒地3种土地利用方式进行土壤CO2呼吸研究。采用壕沟隔断法,探讨了植物根系呼吸在不同土地利用方式下的差异,采用温度敏感系数Q10分析了不同土地利用方式下土壤呼吸对温度的敏感性。结果表明: 土壤呼吸受多方面因素影响,包括土壤温度、湿度、植被类型、农业生产活动等。土壤呼吸日变化过程中,温度是影响土壤呼吸速率的决定性因素。在夏季植物根系呼吸所占的比例最大,超过了50%,春秋两季根系呼吸所占的比例相对较少。受植物种类及植物根系呼吸在土壤呼吸中所占比例大小的影响,在3种不同的土地利用方式下根系自养呼吸所占的比例大小顺序依次为荒地>休耕地>耕地。有根系的土壤呼吸对土壤温度升高的反应要敏感些。  相似文献   

13.
活化灌溉水对土壤理化性质和作物生长影响途径剖析   总被引:4,自引:0,他引:4  
随着水资源短缺问题日益突出,提高我国农业水资源生产效率成为现代灌溉农业的重要研究内容。活化灌溉水技术为挖掘灌溉水的生理生产潜力、提高灌溉水在农业生态系统中的综合功效,提供了新的途径。在综合分析国内外有关活化水理化性质变化特征、活化灌溉水对土壤物质传输与转化、活化灌溉水促进作物生长等方面研究进展的基础上,根据土壤物理、作物生理和物质传输动力学基本理论,剖析了活化灌溉水对土壤物质传输、土壤物质转化、根系吸水吸养、作物产量形成的可能影响途径,并提出了未来重点研究的基础科学和应用技术问题,为科学合理利用活化灌溉水技术提供参考。  相似文献   

14.
用VIC模型模拟黑河上游流域水分和能量通量的时空分布   总被引:3,自引:3,他引:0  
受地形起伏影响, 山区流域的水分和能量通量时空分布差异很大. 利用水文模型VIC (variable infiltration capacity)对黑河上游流域的水文和能量时空分布进行了模拟, 并通过观测对模拟结果进行了验证. 结果表明:VIC模型能够较合理地模拟研究区径流过程, 对净辐射的计算也较准确, 模拟得到的部分水分通量和能量通量(感热、潜热和土壤热通量)在趋势上较一致, 但在数量上存在偏差. 积雪过程对研究区的水文和能量循环有重要影响, VIC模型对积雪的模拟偏差较大, 导致了每年4月左右的模拟径流偏低, 也没有模拟出积雪融化导致的土壤含水量上升; 同时, 积雪模拟的不准确也明显影响到能量通量的模拟. 在研究区, 土壤水分变化受土壤冻融影响明显, VIC模型对气温较高、不发生冻融过程的7-9月土壤水分变化模拟较好, 但是在其他月份, 对积雪及表层土壤消融导致的土壤水分迅速增加和土壤冻结导致的土壤水分迅速减少两个过程的模拟比较差; VIC模型能够给出水分和能量各通量的时空分布, 较好地揭示研究流域各个通量的空间异质性及相互影响.  相似文献   

15.
Vegetation contributes to weak soil stabilisation through reinforcement of the soil, dissipation of excess pore pressure and increasing the shear strength by induced matric suction. This paper describes the way vegetation influences soil matric suction, shrinkage and ground settlement in the vadose zone through transpiration. A mathematical model for the rate of root water uptake, including the root growth rate considering ground conditions, type of vegetation and climatic parameters, has been developed. A finite element approach is employed to solve the transient coupled flow-deformation equations. The finite element mesh is built using partially saturated soil elements capable of representing the salient aspects of unsaturated permeability and the soil water characteristic curve. The model formulation is based on the effective stress theory of unsaturated soils. Based on this proposed model, the distribution of the ground matric suction profile adjacent to the tree is numerically analysed. Current field measurements of soil matric suction and moisture content collected from Miram site located in Victoria State, Australia by the authors are compared with the numerical predictions. The results indicate that the proposed root water uptake model incorporated in the numerical analysis can be used for prediction of ground properties influenced by tree roots.  相似文献   

16.
With the problem of shortage of water resources becoming increasingly prominent, the improvement of production efficiency of agricultural water resources in China has become an important research content of modern irrigated agriculture. The technology of activated irrigation water provides a new way to excavate the physiological production potential of irrigation water and improve the comprehensive efficacy of irrigation water in agro-ecosystems. In this study, the research progress of the variable characteristics of physicochemical properties of activated irrigation water, the transport and transformation of soil material by activated irrigation water, and the promotion of crop growth by activated irrigation water were comprehensively analyzed. On this basis, according to the basic theories of soil physics, crop physiology, and material transport dynamics, the effects of activated irrigation water on soil material transport, soil material transformation, water and nutrition uptake by root, and crop yield formation and the probable pathway were analyzed. The key problems of basic science and applied technology in the future research are put forward to provide reference for the scientific and reasonable utilization of activated irrigation water technology.  相似文献   

17.
高寒草地植被覆盖变化对土壤水分循环影响研究   总被引:40,自引:8,他引:40  
土地覆盖变化对流域水平衡的影响是流域水学和生态水学研究的关键问题之一。以黄河源区两个典型小流域为研究对象,通过对流域不同植被类型与植被覆盖土壤的水分含量、入渗过程、蒸散发特征的测定,研究了高寒草地植被覆盖变化对土壤水分循环的影响.结果表明:广泛分布于青藏高原河源区的高寒草甸草地,植被覆盖度与土壤水分之间具有显的相关关系,尤其是20cm深度范围内土壤水分随植被盖度呈二次抛物线性趋势增加;在保持其原有的植物建群和较高覆盖度时,土壤上层具有较高持水能力,降水通过表层向深层土壤的渗透速度缓慢,且具有较均匀的土壤水分空间分布,水源涵养功能明显;高寒草甸草地退化后的高山草甸土壤趋于干燥,持水能力减弱,即使进行人工改良以后,土壤水分含量与持水能力也不会有明显改善.保护河源区原有高寒草甸草地对于河源区水过程意义重大。  相似文献   

18.
以湄公河流域为研究区,采用区域气候模式RegCM3为模拟工具,以根系层土壤含水量为代表性指标,对A1B情景下未来研究区月尺度农业干旱进行了预估。基于地表能量平衡原理,系统分析了降水、蒸发、地表温度和根系层土壤含水量等农业干旱主要影响因素与区域气候模式模拟的大气环流、地表感热通量、地表潜热通量、地表净通量之间的联系和变化规律,从气陆间能量和水汽通量平衡角度,对农业干旱发生机理进行了识别。预估结果表明:从年内各月地表净通量和地表温度变化来看,未来春末(6月)和秋末(10月)湄公河流域温度增加明显,且土壤含水量减少也较为明显;同时,这两个时段蒸发旺盛和降水减少的趋势,有可能导致流域局部地区(尤其是非灌溉农业区)农业干旱的发生。  相似文献   

19.
干旱区土壤种子库的研究进展   总被引:24,自引:0,他引:24  
土壤种子库在连接过去、现在和将来的植物种群和群落的结构和动态中起着重要的生态和进化作用,对保护和恢复干旱区植被起着重要的作用。从土壤种子库的研究方法、数量特征、分布格局、时空动态、与地上植被关系、年龄结构及影响因素等方面论述了干旱区土壤种子库研究的若干进展,展望了干旱区土壤种子库的研究趋势。  相似文献   

20.
Integration of vegetation processes in rain–runoff (RR) models significantly affects runoff response by influencing evapotranspiration in mesoscale catchments. However, it is impossible to interpret the impacts of vegetation processes on runoff simulations in macroscale catchments using results from mesoscale catchments. Few studies involved vegetation process impacts on hydrological simulations by integrating daily vegetation information into conceptual RR models of macroscale catchments. In this study, we integrated the remotely sensed leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) into a daily Distributed Time-Variant Gain Model (DTVGM). Then, this study assessed the performances of two DTVGM versions, with and without vegetation processes, in the Wei River catchment, China. The results showed that: (1) Integration of MODIS-LAI into the DTVGM model improved the calibration and runoff simulation results of the initial DTVGM model. (2) Inclusion of vegetation processes in the DTVGM changed the simulated proportions of water balance components in the hydrological model and made the simulation of water balance components more accurate. (3) The fact that inclusion of vegetation processes could improve the hydrological simulation performance of the daily conceptual RR model in the macroscale catchment was consistent with studies in mesoscale catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号