首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
2.
3.
We study the effects of winds on the time evolution of isothermal, self-gravitating accretion discs by adopting a radius-dependent mass-loss rate because of the existence of the wind. Our similarity and semi-analytical solution describes time evolution of the system in the slow accretion limit. The disc structure is distinct in the inner and outer parts, irrespective of the existence of the wind. We show that the existence of wind will lead to a reduction of the surface density in the inner and outer parts of the disc in comparison to a no-wind solution. Also, the radial velocity significantly increases in the outer part of the disc, however, the accretion rate decreases due to the reduced surface density in comparison to the no-wind solution. In the inner part of the disc, mass loss due to the wind is negligible according to our solution. But the radial size of this no-wind inner region becomes smaller for stronger winds.  相似文献   

4.
5.
6.
7.
We present a linear analysis of the vertical structure and growth of the magnetorotational instability in stratified, weakly ionized accretion discs, such as protostellar and quiescent dwarf novae systems. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and is assumed to be constant with height.
We obtained solutions for the structure and growth rate of global unstable modes for different conductivity regimes, strengths of the initial magnetic field and coupling between ionized and neutral components of the fluid. The envelopes of short-wavelength perturbations are determined by the action of competing local growth rates at different heights, driven by the vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher above the midplane than modes including Hall conductivity. For weak coupling, perturbations including the Hall effect grow faster and act over a more extended cross-section of the disc than those obtained using the ambipolar diffusion approximation.
Finally, we derived an approximate criterion for when Hall diffusion determines the growth of the magnetorotational instability. This is satisfied over a wide range of radii in protostellar discs, reducing the extent of the magnetic 'dead zone'. Even if the magnetic coupling is weak, significant accretion may occur close to the midplane, rather than in the surface regions of weakly ionized discs.  相似文献   

8.
Following the discovery of X-ray absorption in a high-velocity outflow from the bright quasar PG 1211 + 143 we have searched for similar features in XMM–Newton archival data of a second (high accretion rate) quasar PG 0844+349. Evidence is found for several faint absorption lines in both the EPIC and RGS spectra, whose most likely identification with resonance transitions in H-like Fe, S and Ne implies an origin in highly ionized matter with an outflow velocity of order ∼0.2c. The line equivalent widths require a line-of-sight column density of   N H∼ 4 × 1023 cm−2  , at an ionization parameter of log  ξ∼ 3.7  . Assuming a radial outflow being driven by radiation pressure from the inner accretion disc, as suggested previously for PG 1211 + 143, the flow in PG 0844+349 is also likely to be optically thick, in this case within ∼25 Schwarzschild radii. Our analysis suggests that a high-velocity, highly ionized outflow is likely to be a significant component in the mass and energy budgets of active galactic nuclei accreting at or above the Eddington rate.  相似文献   

9.
10.
11.
12.
13.
14.
We present a method of determining lower limits on the masses of pre-main-sequence (PMS) stars and so constraining the PMS evolutionary tracks. This method uses the redshifted absorption feature observed in some emission-line profiles of T Tauri stars, indicative of infall. The maximum velocity of the accreting material measures the potential energy at the stellar surface, which, combined with an observational determination of the stellar radius, yields the stellar mass. This estimate is a lower limit owing to uncertainties in the geometry and projection effects. Using available data, we show that the computed lower limits can be larger than the masses derived from PMS evolutionary tracks for M   0.5 M. Our analysis also supports the notion that accretion streams do not impact near the stellar poles but probably hit the stellar surface at moderate latitudes.  相似文献   

15.
In this paper we investigate, by linear modal analysis, the one-armed dynamical instability of a two-dimensional fluid disc that has a massive object at its centre. The model of the disc is chosen to avoid the artificial instabilities that originate from the unrealistic disc configurations that have been adopted in previous studies. We find a one-armed instability for which the central massive object is displaced from the centre, which is generally called the 'eccentric instability'. However, to excite the eccentric instability, the mass of the central object should be appreciably smaller than that of the disc, and this mass ratio is far smaller than what was originally proposed. The instability shown in this paper is likely to be excited in a stellar system with a central massive object, e.g. a galactic nucleus harbouring a massive black hole, and further studies are desirable via techniques such as numerical simulations.  相似文献   

16.
17.
The rates at which mass accumulates into protostellar cores can now be predicted in numerical simulations. Our purpose here is to develop methods to compare the statistical properties of the predicted protostars with the observable parameters. This requires (1) an evolutionary scheme to convert numerically derived mass accretion rates into evolutionary tracks and (2) a technique to compare the tracks to the observed statistics of protostars. Here, we use a 3D Kolmogorov–Smirnov test to quantitatively compare model evolutionary tracks and observations of Class 0 protostars.
We find that the wide range of accretion functions and time-scales associated with gravoturbulent simulations naturally overcome difficulties associated with schemes that use a fixed accretion pattern. This implies that the location of a protostar on an evolutionary track does not precisely determine the present age or final accrued mass. Rather, we find that predictions of the final mass for protostars from observed   T bol– L bol  values are uncertain by a factor of 2 and that the bolometric temperature is not always a reliable measure of the evolutionary stage. Furthermore, we constrain several parameters of the evolutionary scheme and estimate a lifetime of Class 0 sources of  2–6 × 104 yr  , which is related to the local free-fall time and thus to the local density at the onset of the collapse. Models with Mach numbers smaller than six are found to best explain the observational data. Generally, only a probability of 70 per cent was found that our models explain the current observations. This is caused by not well-understood selection effects in the observational sample and the simplified assumptions in the models.  相似文献   

18.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   

19.
20.
We have carried out a systematic search for the molecular ion CO+ in a sample of eight protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues for the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号